Message ID | 20250403154925.382973-6-stefan.klug@ideasonboard.com |
---|---|
State | New |
Headers | show |
Series |
|
Related | show |
Quoting Stefan Klug (2025-04-03 16:49:10) > For calculations in upcoming algorithm patches, the inverse of a matrix > is required. Add an implementation of the inverse() function for square > matrices. > > Signed-off-by: Stefan Klug <stefan.klug@ideasonboard.com> > Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com> > Given there's a test structure added after this... Reviewed-by: Kieran Bingham <kieran.bingham@ideasonboard.com> Maybe that should be just acked by as I'm not spending a lot of time to review the Gaussian Ellimination here - but I trust you and Laurent and the results of some tests being added to the unit tests for it so I'm fine with it ;-) > --- > > Changes in v2: > - Replaced the implementation by a generic one provided by Laurent that > supports arbitrary square matrices instead of 2x2 and 3x3 only. > - Moved the implementation into the cpp file. > > Changes inv3: > - Added stack allocated scratchBuffers to matrixInvert so that no heap > allocations are necessary. > --- > include/libcamera/internal/matrix.h | 23 ++++ > src/libcamera/matrix.cpp | 166 ++++++++++++++++++++++++++++ > 2 files changed, 189 insertions(+) > > diff --git a/include/libcamera/internal/matrix.h b/include/libcamera/internal/matrix.h > index 6d40567af0a0..a07a47701336 100644 > --- a/include/libcamera/internal/matrix.h > +++ b/include/libcamera/internal/matrix.h > @@ -19,6 +19,12 @@ namespace libcamera { > > LOG_DECLARE_CATEGORY(Matrix) > > +#ifndef __DOXYGEN__ > +template<typename T> > +bool matrixInvert(Span<const T> dataIn, Span<T> dataOut, unsigned int dim, > + Span<T> scratchBuffer, Span<unsigned int> swapBuffer); > +#endif /* __DOXYGEN__ */ > + > template<typename T, unsigned int Rows, unsigned int Cols> > class Matrix > { > @@ -91,6 +97,23 @@ public: > return *this; > } > > + Matrix<T, Rows, Cols> inverse(bool *ok = nullptr) const > + { > + static_assert(Rows == Cols, "Matrix must be square"); > + > + Matrix<T, Rows, Cols> inverse; > + std::array<T, Rows * Cols * 2> scratchBuffer; > + std::array<unsigned int, Rows> swapBuffer; > + bool res = matrixInvert(Span<const T>(data_), > + Span<T>(inverse.data_), > + Rows, > + Span<T>(scratchBuffer), > + Span<unsigned int>(swapBuffer)); > + if (ok) > + *ok = res; > + return inverse; > + } > + > private: > /* > * \todo The initializer is only necessary for the constructor to be > diff --git a/src/libcamera/matrix.cpp b/src/libcamera/matrix.cpp > index 49e2aa3b4f2c..68fc1b7bd5ac 100644 > --- a/src/libcamera/matrix.cpp > +++ b/src/libcamera/matrix.cpp > @@ -7,6 +7,12 @@ > > #include "libcamera/internal/matrix.h" > > +#include <algorithm> > +#include <assert.h> > +#include <cmath> > +#include <numeric> > +#include <vector> > + > #include <libcamera/base/log.h> > > /** > @@ -87,6 +93,20 @@ LOG_DEFINE_CATEGORY(Matrix) > * \return Row \a i from the matrix, as a Span > */ > > +/** > + * \fn Matrix::inverse(bool *ok) const > + * \param[out] ok Indicate if the matrix was successfully inverted > + * \brief Compute the inverse of the matrix > + * > + * This function computes the inverse of the matrix. It is only implemented for > + * matrices of float and double types. If \a ok is provided it will be set to a > + * boolean value to indicate of the inversion was successful. This can be used > + * to check if the matrix is singular, in which case the function will return > + * an identity matrix. > + * > + * \return The inverse of the matrix > + */ > + > /** > * \fn Matrix::operator[](size_t i) > * \copydoc Matrix::operator[](size_t i) const > @@ -142,6 +162,152 @@ LOG_DEFINE_CATEGORY(Matrix) > */ > > #ifndef __DOXYGEN__ > +template<typename T> > +bool matrixInvert(Span<const T> dataIn, Span<T> dataOut, unsigned int dim, > + Span<T> scratchBuffer, Span<unsigned int> swapBuffer) > +{ > + /* > + * Convenience class to access matrix data, providing a row-major (i,j) > + * element accessor through the call operator, and the ability to swap > + * rows without modifying the backing storage. > + */ > + class MatrixAccessor > + { > + public: > + MatrixAccessor(Span<T> data, Span<unsigned int> swapBuffer, unsigned int rows, unsigned int cols) > + : data_(data), swap_(swapBuffer), rows_(rows), cols_(cols) > + { > + ASSERT(swap_.size() == rows); > + std::iota(swap_.begin(), swap_.end(), T{ 0 }); > + } > + > + T &operator()(unsigned int row, unsigned int col) > + { > + assert(row < rows_ && col < cols_); > + return data_[index(row, col)]; > + } > + > + void swap(unsigned int a, unsigned int b) > + { > + assert(a < rows_ && a < cols_); > + std::swap(swap_[a], swap_[b]); > + } > + > + private: > + unsigned int index(unsigned int row, unsigned int col) const > + { > + return swap_[row] * cols_ + col; > + } > + > + Span<T> data_; > + Span<unsigned int> swap_; > + unsigned int rows_; > + unsigned int cols_; > + }; > + > + /* > + * Matrix inversion using Gaussian elimination. > + * > + * Start by augmenting the original matrix with an identiy matrix of > + * the same size. > + */ > + ASSERT(scratchBuffer.size() == dim * dim * 2); > + MatrixAccessor matrix(scratchBuffer, swapBuffer, dim, dim * 2); > + > + for (unsigned int i = 0; i < dim; ++i) { > + for (unsigned int j = 0; j < dim; ++j) { > + matrix(i, j) = dataIn[i * dim + j]; > + matrix(i, j + dim) = T{ 0 }; > + } > + matrix(i, i + dim) = T{ 1 }; > + } > + > + /* Start by triangularizing the input . */ > + for (unsigned int pivot = 0; pivot < dim; ++pivot) { > + /* > + * Locate the next pivot. To improve numerical stability, use > + * the row with the largest value in the pivot's column. > + */ > + unsigned int row; > + T maxValue{ 0 }; > + > + for (unsigned int i = pivot; i < dim; ++i) { > + T value = std::abs(matrix(i, pivot)); > + if (maxValue < value) { > + maxValue = value; > + row = i; > + } > + } > + > + /* > + * If no pivot is found in the column, the matrix is not > + * invertible. Return an identity matrix. > + */ > + if (maxValue == 0) { > + std::fill(dataOut.begin(), dataOut.end(), T{ 0 }); > + for (unsigned int i = 0; i < dim; ++i) > + dataOut[i * dim + i] = T{ 1 }; > + return false; > + } > + > + /* Swap rows to bring the pivot in the right location. */ > + matrix.swap(pivot, row); > + > + /* Process all rows below the pivot to zero the pivot column. */ > + const T pivotValue = matrix(pivot, pivot); > + > + for (unsigned int i = pivot + 1; i < dim; ++i) { > + const T factor = matrix(i, pivot) / pivotValue; > + > + /* > + * We know the element in the pivot column will be 0, > + * hardcode it instead of computing it. > + */ > + matrix(i, pivot) = T{ 0 }; > + > + for (unsigned int j = pivot + 1; j < dim * 2; ++j) > + matrix(i, j) -= matrix(pivot, j) * factor; > + } > + } > + > + /* > + * Then diagonalize the input, walking the diagonal backwards. There's > + * no need to update the input matrix, as all the values we would write > + * in the top-right triangle aren't used in further calculations (and > + * would all by definition be zero). > + */ > + for (unsigned int pivot = dim - 1; pivot > 0; --pivot) { > + const T pivotValue = matrix(pivot, pivot); > + > + for (unsigned int i = 0; i < pivot; ++i) { > + const T factor = matrix(i, pivot) / pivotValue; > + > + for (unsigned int j = dim; j < dim * 2; ++j) > + matrix(i, j) -= matrix(pivot, j) * factor; > + } > + } > + > + /* > + * Finally, normalize the diagonal and store the result in the output > + * data. > + */ > + for (unsigned int i = 0; i < dim; ++i) { > + const T factor = matrix(i, i); > + > + for (unsigned int j = 0; j < dim; ++j) > + dataOut[i * dim + j] = matrix(i, j + dim) / factor; > + } > + > + return true; > +} > + > +template bool matrixInvert<float>(Span<const float> dataIn, Span<float> dataOut, > + unsigned int dim, Span<float> scratchBuffer, > + Span<unsigned int> swapBuffer); > +template bool matrixInvert<double>(Span<const double> data, Span<double> dataOut, > + unsigned int dim, Span<double> scratchBuffer, > + Span<unsigned int> swapBuffer); > + > /* > * The YAML data shall be a list of numerical values. Its size shall be equal > * to the product of the number of rows and columns of the matrix (Rows x > -- > 2.43.0 >
On Fri, May 02, 2025 at 08:49:42AM +0100, Kieran Bingham wrote: > Quoting Stefan Klug (2025-04-03 16:49:10) > > For calculations in upcoming algorithm patches, the inverse of a matrix > > is required. Add an implementation of the inverse() function for square > > matrices. > > > > Signed-off-by: Stefan Klug <stefan.klug@ideasonboard.com> > > Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com> > > > > Given there's a test structure added after this... > > > Reviewed-by: Kieran Bingham <kieran.bingham@ideasonboard.com> > > Maybe that should be just acked by as I'm not spending a lot of time to > review the Gaussian Ellimination here - but I trust you and > Laurent and the results of some tests being added to the unit tests for > it so I'm fine with it ;-) I went through and reviewed the Gaussian Elimination... Reviewed-by: Paul Elder <paul.elder@ideasonboard.com> > > > --- > > > > Changes in v2: > > - Replaced the implementation by a generic one provided by Laurent that > > supports arbitrary square matrices instead of 2x2 and 3x3 only. > > - Moved the implementation into the cpp file. > > > > Changes inv3: > > - Added stack allocated scratchBuffers to matrixInvert so that no heap > > allocations are necessary. > > --- > > include/libcamera/internal/matrix.h | 23 ++++ > > src/libcamera/matrix.cpp | 166 ++++++++++++++++++++++++++++ > > 2 files changed, 189 insertions(+) > > > > diff --git a/include/libcamera/internal/matrix.h b/include/libcamera/internal/matrix.h > > index 6d40567af0a0..a07a47701336 100644 > > --- a/include/libcamera/internal/matrix.h > > +++ b/include/libcamera/internal/matrix.h > > @@ -19,6 +19,12 @@ namespace libcamera { > > > > LOG_DECLARE_CATEGORY(Matrix) > > > > +#ifndef __DOXYGEN__ > > +template<typename T> > > +bool matrixInvert(Span<const T> dataIn, Span<T> dataOut, unsigned int dim, > > + Span<T> scratchBuffer, Span<unsigned int> swapBuffer); > > +#endif /* __DOXYGEN__ */ > > + > > template<typename T, unsigned int Rows, unsigned int Cols> > > class Matrix > > { > > @@ -91,6 +97,23 @@ public: > > return *this; > > } > > > > + Matrix<T, Rows, Cols> inverse(bool *ok = nullptr) const > > + { > > + static_assert(Rows == Cols, "Matrix must be square"); > > + > > + Matrix<T, Rows, Cols> inverse; > > + std::array<T, Rows * Cols * 2> scratchBuffer; > > + std::array<unsigned int, Rows> swapBuffer; > > + bool res = matrixInvert(Span<const T>(data_), > > + Span<T>(inverse.data_), > > + Rows, > > + Span<T>(scratchBuffer), > > + Span<unsigned int>(swapBuffer)); > > + if (ok) > > + *ok = res; > > + return inverse; > > + } > > + > > private: > > /* > > * \todo The initializer is only necessary for the constructor to be > > diff --git a/src/libcamera/matrix.cpp b/src/libcamera/matrix.cpp > > index 49e2aa3b4f2c..68fc1b7bd5ac 100644 > > --- a/src/libcamera/matrix.cpp > > +++ b/src/libcamera/matrix.cpp > > @@ -7,6 +7,12 @@ > > > > #include "libcamera/internal/matrix.h" > > > > +#include <algorithm> > > +#include <assert.h> > > +#include <cmath> > > +#include <numeric> > > +#include <vector> > > + > > #include <libcamera/base/log.h> > > > > /** > > @@ -87,6 +93,20 @@ LOG_DEFINE_CATEGORY(Matrix) > > * \return Row \a i from the matrix, as a Span > > */ > > > > +/** > > + * \fn Matrix::inverse(bool *ok) const > > + * \param[out] ok Indicate if the matrix was successfully inverted > > + * \brief Compute the inverse of the matrix > > + * > > + * This function computes the inverse of the matrix. It is only implemented for > > + * matrices of float and double types. If \a ok is provided it will be set to a > > + * boolean value to indicate of the inversion was successful. This can be used > > + * to check if the matrix is singular, in which case the function will return > > + * an identity matrix. > > + * > > + * \return The inverse of the matrix > > + */ > > + > > /** > > * \fn Matrix::operator[](size_t i) > > * \copydoc Matrix::operator[](size_t i) const > > @@ -142,6 +162,152 @@ LOG_DEFINE_CATEGORY(Matrix) > > */ > > > > #ifndef __DOXYGEN__ > > +template<typename T> > > +bool matrixInvert(Span<const T> dataIn, Span<T> dataOut, unsigned int dim, > > + Span<T> scratchBuffer, Span<unsigned int> swapBuffer) > > +{ > > + /* > > + * Convenience class to access matrix data, providing a row-major (i,j) > > + * element accessor through the call operator, and the ability to swap > > + * rows without modifying the backing storage. > > + */ > > + class MatrixAccessor > > + { > > + public: > > + MatrixAccessor(Span<T> data, Span<unsigned int> swapBuffer, unsigned int rows, unsigned int cols) > > + : data_(data), swap_(swapBuffer), rows_(rows), cols_(cols) > > + { > > + ASSERT(swap_.size() == rows); > > + std::iota(swap_.begin(), swap_.end(), T{ 0 }); > > + } > > + > > + T &operator()(unsigned int row, unsigned int col) > > + { > > + assert(row < rows_ && col < cols_); > > + return data_[index(row, col)]; > > + } > > + > > + void swap(unsigned int a, unsigned int b) > > + { > > + assert(a < rows_ && a < cols_); > > + std::swap(swap_[a], swap_[b]); > > + } > > + > > + private: > > + unsigned int index(unsigned int row, unsigned int col) const > > + { > > + return swap_[row] * cols_ + col; > > + } > > + > > + Span<T> data_; > > + Span<unsigned int> swap_; > > + unsigned int rows_; > > + unsigned int cols_; > > + }; > > + > > + /* > > + * Matrix inversion using Gaussian elimination. > > + * > > + * Start by augmenting the original matrix with an identiy matrix of > > + * the same size. > > + */ > > + ASSERT(scratchBuffer.size() == dim * dim * 2); > > + MatrixAccessor matrix(scratchBuffer, swapBuffer, dim, dim * 2); > > + > > + for (unsigned int i = 0; i < dim; ++i) { > > + for (unsigned int j = 0; j < dim; ++j) { > > + matrix(i, j) = dataIn[i * dim + j]; > > + matrix(i, j + dim) = T{ 0 }; > > + } > > + matrix(i, i + dim) = T{ 1 }; > > + } > > + > > + /* Start by triangularizing the input . */ > > + for (unsigned int pivot = 0; pivot < dim; ++pivot) { > > + /* > > + * Locate the next pivot. To improve numerical stability, use > > + * the row with the largest value in the pivot's column. > > + */ > > + unsigned int row; > > + T maxValue{ 0 }; > > + > > + for (unsigned int i = pivot; i < dim; ++i) { > > + T value = std::abs(matrix(i, pivot)); > > + if (maxValue < value) { > > + maxValue = value; > > + row = i; > > + } > > + } > > + > > + /* > > + * If no pivot is found in the column, the matrix is not > > + * invertible. Return an identity matrix. > > + */ > > + if (maxValue == 0) { > > + std::fill(dataOut.begin(), dataOut.end(), T{ 0 }); > > + for (unsigned int i = 0; i < dim; ++i) > > + dataOut[i * dim + i] = T{ 1 }; > > + return false; > > + } > > + > > + /* Swap rows to bring the pivot in the right location. */ > > + matrix.swap(pivot, row); > > + > > + /* Process all rows below the pivot to zero the pivot column. */ > > + const T pivotValue = matrix(pivot, pivot); > > + > > + for (unsigned int i = pivot + 1; i < dim; ++i) { > > + const T factor = matrix(i, pivot) / pivotValue; > > + > > + /* > > + * We know the element in the pivot column will be 0, > > + * hardcode it instead of computing it. > > + */ > > + matrix(i, pivot) = T{ 0 }; > > + > > + for (unsigned int j = pivot + 1; j < dim * 2; ++j) > > + matrix(i, j) -= matrix(pivot, j) * factor; > > + } > > + } > > + > > + /* > > + * Then diagonalize the input, walking the diagonal backwards. There's > > + * no need to update the input matrix, as all the values we would write > > + * in the top-right triangle aren't used in further calculations (and > > + * would all by definition be zero). > > + */ > > + for (unsigned int pivot = dim - 1; pivot > 0; --pivot) { > > + const T pivotValue = matrix(pivot, pivot); > > + > > + for (unsigned int i = 0; i < pivot; ++i) { > > + const T factor = matrix(i, pivot) / pivotValue; > > + > > + for (unsigned int j = dim; j < dim * 2; ++j) > > + matrix(i, j) -= matrix(pivot, j) * factor; > > + } > > + } > > + > > + /* > > + * Finally, normalize the diagonal and store the result in the output > > + * data. > > + */ > > + for (unsigned int i = 0; i < dim; ++i) { > > + const T factor = matrix(i, i); > > + > > + for (unsigned int j = 0; j < dim; ++j) > > + dataOut[i * dim + j] = matrix(i, j + dim) / factor; > > + } > > + > > + return true; > > +} > > + > > +template bool matrixInvert<float>(Span<const float> dataIn, Span<float> dataOut, > > + unsigned int dim, Span<float> scratchBuffer, > > + Span<unsigned int> swapBuffer); > > +template bool matrixInvert<double>(Span<const double> data, Span<double> dataOut, > > + unsigned int dim, Span<double> scratchBuffer, > > + Span<unsigned int> swapBuffer); > > + > > /* > > * The YAML data shall be a list of numerical values. Its size shall be equal > > * to the product of the number of rows and columns of the matrix (Rows x > > -- > > 2.43.0 > >
diff --git a/include/libcamera/internal/matrix.h b/include/libcamera/internal/matrix.h index 6d40567af0a0..a07a47701336 100644 --- a/include/libcamera/internal/matrix.h +++ b/include/libcamera/internal/matrix.h @@ -19,6 +19,12 @@ namespace libcamera { LOG_DECLARE_CATEGORY(Matrix) +#ifndef __DOXYGEN__ +template<typename T> +bool matrixInvert(Span<const T> dataIn, Span<T> dataOut, unsigned int dim, + Span<T> scratchBuffer, Span<unsigned int> swapBuffer); +#endif /* __DOXYGEN__ */ + template<typename T, unsigned int Rows, unsigned int Cols> class Matrix { @@ -91,6 +97,23 @@ public: return *this; } + Matrix<T, Rows, Cols> inverse(bool *ok = nullptr) const + { + static_assert(Rows == Cols, "Matrix must be square"); + + Matrix<T, Rows, Cols> inverse; + std::array<T, Rows * Cols * 2> scratchBuffer; + std::array<unsigned int, Rows> swapBuffer; + bool res = matrixInvert(Span<const T>(data_), + Span<T>(inverse.data_), + Rows, + Span<T>(scratchBuffer), + Span<unsigned int>(swapBuffer)); + if (ok) + *ok = res; + return inverse; + } + private: /* * \todo The initializer is only necessary for the constructor to be diff --git a/src/libcamera/matrix.cpp b/src/libcamera/matrix.cpp index 49e2aa3b4f2c..68fc1b7bd5ac 100644 --- a/src/libcamera/matrix.cpp +++ b/src/libcamera/matrix.cpp @@ -7,6 +7,12 @@ #include "libcamera/internal/matrix.h" +#include <algorithm> +#include <assert.h> +#include <cmath> +#include <numeric> +#include <vector> + #include <libcamera/base/log.h> /** @@ -87,6 +93,20 @@ LOG_DEFINE_CATEGORY(Matrix) * \return Row \a i from the matrix, as a Span */ +/** + * \fn Matrix::inverse(bool *ok) const + * \param[out] ok Indicate if the matrix was successfully inverted + * \brief Compute the inverse of the matrix + * + * This function computes the inverse of the matrix. It is only implemented for + * matrices of float and double types. If \a ok is provided it will be set to a + * boolean value to indicate of the inversion was successful. This can be used + * to check if the matrix is singular, in which case the function will return + * an identity matrix. + * + * \return The inverse of the matrix + */ + /** * \fn Matrix::operator[](size_t i) * \copydoc Matrix::operator[](size_t i) const @@ -142,6 +162,152 @@ LOG_DEFINE_CATEGORY(Matrix) */ #ifndef __DOXYGEN__ +template<typename T> +bool matrixInvert(Span<const T> dataIn, Span<T> dataOut, unsigned int dim, + Span<T> scratchBuffer, Span<unsigned int> swapBuffer) +{ + /* + * Convenience class to access matrix data, providing a row-major (i,j) + * element accessor through the call operator, and the ability to swap + * rows without modifying the backing storage. + */ + class MatrixAccessor + { + public: + MatrixAccessor(Span<T> data, Span<unsigned int> swapBuffer, unsigned int rows, unsigned int cols) + : data_(data), swap_(swapBuffer), rows_(rows), cols_(cols) + { + ASSERT(swap_.size() == rows); + std::iota(swap_.begin(), swap_.end(), T{ 0 }); + } + + T &operator()(unsigned int row, unsigned int col) + { + assert(row < rows_ && col < cols_); + return data_[index(row, col)]; + } + + void swap(unsigned int a, unsigned int b) + { + assert(a < rows_ && a < cols_); + std::swap(swap_[a], swap_[b]); + } + + private: + unsigned int index(unsigned int row, unsigned int col) const + { + return swap_[row] * cols_ + col; + } + + Span<T> data_; + Span<unsigned int> swap_; + unsigned int rows_; + unsigned int cols_; + }; + + /* + * Matrix inversion using Gaussian elimination. + * + * Start by augmenting the original matrix with an identiy matrix of + * the same size. + */ + ASSERT(scratchBuffer.size() == dim * dim * 2); + MatrixAccessor matrix(scratchBuffer, swapBuffer, dim, dim * 2); + + for (unsigned int i = 0; i < dim; ++i) { + for (unsigned int j = 0; j < dim; ++j) { + matrix(i, j) = dataIn[i * dim + j]; + matrix(i, j + dim) = T{ 0 }; + } + matrix(i, i + dim) = T{ 1 }; + } + + /* Start by triangularizing the input . */ + for (unsigned int pivot = 0; pivot < dim; ++pivot) { + /* + * Locate the next pivot. To improve numerical stability, use + * the row with the largest value in the pivot's column. + */ + unsigned int row; + T maxValue{ 0 }; + + for (unsigned int i = pivot; i < dim; ++i) { + T value = std::abs(matrix(i, pivot)); + if (maxValue < value) { + maxValue = value; + row = i; + } + } + + /* + * If no pivot is found in the column, the matrix is not + * invertible. Return an identity matrix. + */ + if (maxValue == 0) { + std::fill(dataOut.begin(), dataOut.end(), T{ 0 }); + for (unsigned int i = 0; i < dim; ++i) + dataOut[i * dim + i] = T{ 1 }; + return false; + } + + /* Swap rows to bring the pivot in the right location. */ + matrix.swap(pivot, row); + + /* Process all rows below the pivot to zero the pivot column. */ + const T pivotValue = matrix(pivot, pivot); + + for (unsigned int i = pivot + 1; i < dim; ++i) { + const T factor = matrix(i, pivot) / pivotValue; + + /* + * We know the element in the pivot column will be 0, + * hardcode it instead of computing it. + */ + matrix(i, pivot) = T{ 0 }; + + for (unsigned int j = pivot + 1; j < dim * 2; ++j) + matrix(i, j) -= matrix(pivot, j) * factor; + } + } + + /* + * Then diagonalize the input, walking the diagonal backwards. There's + * no need to update the input matrix, as all the values we would write + * in the top-right triangle aren't used in further calculations (and + * would all by definition be zero). + */ + for (unsigned int pivot = dim - 1; pivot > 0; --pivot) { + const T pivotValue = matrix(pivot, pivot); + + for (unsigned int i = 0; i < pivot; ++i) { + const T factor = matrix(i, pivot) / pivotValue; + + for (unsigned int j = dim; j < dim * 2; ++j) + matrix(i, j) -= matrix(pivot, j) * factor; + } + } + + /* + * Finally, normalize the diagonal and store the result in the output + * data. + */ + for (unsigned int i = 0; i < dim; ++i) { + const T factor = matrix(i, i); + + for (unsigned int j = 0; j < dim; ++j) + dataOut[i * dim + j] = matrix(i, j + dim) / factor; + } + + return true; +} + +template bool matrixInvert<float>(Span<const float> dataIn, Span<float> dataOut, + unsigned int dim, Span<float> scratchBuffer, + Span<unsigned int> swapBuffer); +template bool matrixInvert<double>(Span<const double> data, Span<double> dataOut, + unsigned int dim, Span<double> scratchBuffer, + Span<unsigned int> swapBuffer); + /* * The YAML data shall be a list of numerical values. Its size shall be equal * to the product of the number of rows and columns of the matrix (Rows x