[v2,05/17] libcamera: matrix: Add inverse() function
diff mbox series

Message ID 20250319161152.63625-6-stefan.klug@ideasonboard.com
State New
Headers show
Series
  • Some rkisp1 awb improvements
Related show

Commit Message

Stefan Klug March 19, 2025, 4:11 p.m. UTC
For calculations in upcoming algorithm patches, the inverse of a matrix
is required. Add an implementation of the inverse() function for square
matrices.

Signed-off-by: Stefan Klug <stefan.klug@ideasonboard.com>
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>

---

Changes in v2:
- Replaced the implementation by a generic one provided by Laurent that
  supports arbitrary square matrices instead of 2x2 and 3x3 only.
- Moved the implementation into the cpp file.
---
 include/libcamera/internal/matrix.h |  16 +++
 src/libcamera/matrix.cpp            | 160 ++++++++++++++++++++++++++++
 2 files changed, 176 insertions(+)

Patch
diff mbox series

diff --git a/include/libcamera/internal/matrix.h b/include/libcamera/internal/matrix.h
index 9b80521e3cb0..6e3c190286fe 100644
--- a/include/libcamera/internal/matrix.h
+++ b/include/libcamera/internal/matrix.h
@@ -19,6 +19,11 @@  namespace libcamera {
 
 LOG_DECLARE_CATEGORY(Matrix)
 
+#ifndef __DOXYGEN__
+template<typename T>
+bool matrixInvert(Span<const T> dataIn, Span<T> dataOut, unsigned int dim);
+#endif /* __DOXYGEN__ */
+
 template<typename T, unsigned int Rows, unsigned int Cols>
 class Matrix
 {
@@ -88,6 +93,17 @@  public:
 		return *this;
 	}
 
+	Matrix<T, Rows, Cols> inverse(bool *ok = nullptr) const
+	{
+		static_assert(Rows == Cols, "Matrix must be square");
+
+		Matrix<T, Rows, Cols> inverse;
+		bool res = matrixInvert(Span<const T>(data_), Span<T>(inverse.data_), Rows);
+		if (ok)
+			*ok = res;
+		return inverse;
+	}
+
 private:
 	std::array<T, Rows * Cols> data_{};
 };
diff --git a/src/libcamera/matrix.cpp b/src/libcamera/matrix.cpp
index 6dca7498cab3..8590f8efeff3 100644
--- a/src/libcamera/matrix.cpp
+++ b/src/libcamera/matrix.cpp
@@ -7,6 +7,12 @@ 
 
 #include "libcamera/internal/matrix.h"
 
+#include <algorithm>
+#include <assert.h>
+#include <cmath>
+#include <numeric>
+#include <vector>
+
 #include <libcamera/base/log.h>
 
 /**
@@ -87,6 +93,20 @@  LOG_DEFINE_CATEGORY(Matrix)
  * \return Row \a i from the matrix, as a Span
  */
 
+/**
+ * \fn Matrix::inverse(bool *ok) const
+ * \param[out] ok Indicate if the matrix was successfully inverted
+ * \brief Compute the inverse of the matrix
+ *
+ * This function computes the inverse of the matrix. It is only implemented for
+ * matrices of float and double types. If \a ok is provided it will be set to a
+ * boolean value to indicate of the inversion was successful. This can be used
+ * to check if the matrix is singular, in which case the function will return
+ * an identity matrix.
+ *
+ * \return The inverse of the matrix
+ */
+
 /**
  * \fn Matrix::operator[](size_t i)
  * \copydoc Matrix::operator[](size_t i) const
@@ -142,6 +162,146 @@  LOG_DEFINE_CATEGORY(Matrix)
  */
 
 #ifndef __DOXYGEN__
+template<typename T>
+bool matrixInvert(Span<const T> dataIn, Span<T> dataOut, unsigned int dim)
+{
+	/*
+	 * Convenience class to access matrix data, providing a row-major (i,j)
+	 * element accessor through the call operator, and the ability to swap
+	 * rows without modifying the backing storage.
+	 */
+	class MatrixAccessor
+	{
+	public:
+		MatrixAccessor(Span<T> data, unsigned int rows, unsigned int cols)
+			: data_(data), swap_(rows), rows_(rows), cols_(cols)
+		{
+			std::iota(swap_.begin(), swap_.end(), T{ 0 });
+		}
+
+		T &operator()(unsigned int row, unsigned int col)
+		{
+			assert(row < rows_ && col < cols_);
+			return data_[index(row, col)];
+		}
+
+		void swap(unsigned int a, unsigned int b)
+		{
+			assert(a < rows_ && a < cols_);
+			std::swap(swap_[a], swap_[b]);
+		}
+
+	private:
+		unsigned int index(unsigned int row, unsigned int col) const
+		{
+			return swap_[row] * cols_ + col;
+		}
+
+		Span<T> data_;
+		std::vector<unsigned int> swap_;
+		unsigned int rows_;
+		unsigned int cols_;
+	};
+
+	/*
+	 * Matrix inversion using Gaussian elimination.
+	 *
+	 * Start by augmenting the original matrix with an identiy matrix of
+	 * the same size.
+	 */
+	std::vector<T> data(dim * dim * 2);
+	MatrixAccessor matrix(data, dim, dim * 2);
+
+	for (unsigned int i = 0; i < dim; ++i) {
+		for (unsigned int j = 0; j < dim; ++j)
+			matrix(i, j) = dataIn[i * dim + j];
+		matrix(i, i + dim) = T{ 1 };
+	}
+
+	/* Start by triangularizing the input . */
+	for (unsigned int pivot = 0; pivot < dim; ++pivot) {
+		/*
+		 * Locate the next pivot. To improve numerical stability, use
+		 * the row with the largest value in the pivot's column.
+		 */
+		unsigned int row;
+		T maxValue{ 0 };
+
+		for (unsigned int i = pivot; i < dim; ++i) {
+			T value = std::abs(matrix(i, pivot));
+			if (maxValue < value) {
+				maxValue = value;
+				row = i;
+			}
+		}
+
+		/*
+		 * If no pivot is found in the column, the matrix is not
+		 * invertible. Return an identity matrix.
+		 */
+		if (maxValue == 0) {
+			std::fill(dataOut.begin(), dataOut.end(), T{ 0 });
+			for (unsigned int i = 0; i < dim; ++i)
+				dataOut[i * dim + i] = T{ 1 };
+			return false;
+		}
+
+		/* Swap rows to bring the pivot in the right location. */
+		matrix.swap(pivot, row);
+
+		/* Process all rows below the pivot to zero the pivot column. */
+		const T pivotValue = matrix(pivot, pivot);
+
+		for (unsigned int i = pivot + 1; i < dim; ++i) {
+			const T factor = matrix(i, pivot) / pivotValue;
+
+			/*
+			 * We know the element in the pivot column will be 0,
+			 * hardcode it instead of computing it.
+			 */
+			matrix(i, pivot) = T{ 0 };
+
+			for (unsigned int j = pivot + 1; j < dim * 2; ++j)
+				matrix(i, j) -= matrix(pivot, j) * factor;
+		}
+	}
+
+	/*
+	 * Then diagonalize the input, walking the diagonal backwards. There's
+	 * no need to update the input matrix, as all the values we would write
+	 * in the top-right triangle aren't used in further calculations (and
+	 * would all by definition be zero).
+	 */
+	for (unsigned int pivot = dim - 1; pivot > 0; --pivot) {
+		const T pivotValue = matrix(pivot, pivot);
+
+		for (unsigned int i = 0; i < pivot; ++i) {
+			const T factor = matrix(i, pivot) / pivotValue;
+
+			for (unsigned int j = dim; j < dim * 2; ++j)
+				matrix(i, j) -= matrix(pivot, j) * factor;
+		}
+	}
+
+	/*
+	 * Finally, normalize the diagonal and store the result in the output
+	 * data.
+	 */
+	for (unsigned int i = 0; i < dim; ++i) {
+		const T factor = matrix(i, i);
+
+		for (unsigned int j = 0; j < dim; ++j)
+			dataOut[i * dim + j] = matrix(i, j + dim) / factor;
+	}
+
+	return true;
+}
+
+template bool matrixInvert<float>(Span<const float> dataIn, Span<float> dataOut,
+				  unsigned int dim);
+template bool matrixInvert<double>(Span<const double> data, Span<double> dataOut,
+				   unsigned int dim);
+
 /*
  * The YAML data shall be a list of numerical values. Its size shall be equal
  * to the product of the number of rows and columns of the matrix (Rows x