Message ID | 20221110173154.488445-6-paul.elder@ideasonboard.com |
---|---|
State | Accepted |
Headers | show |
Series |
|
Related | show |
Hi Paul, Thank you for the patch. On Fri, Nov 11, 2022 at 02:31:47AM +0900, Paul Elder wrote: > Add an ALSC module for Raspberry Pi. > > Signed-off-by: Paul Elder <paul.elder@ideasonboard.com> > Reviewed-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com> > > --- > Changes in v3: > - add file description > - add comment about type name change > - override the type name to alsc now that the base type name is lsc > - use Param's getter > > New in v2 > --- > .../tuning/libtuning/modules/lsc/__init__.py | 1 + > .../libtuning/modules/lsc/raspberrypi.py | 250 ++++++++++++++++++ > 2 files changed, 251 insertions(+) > create mode 100644 utils/tuning/libtuning/modules/lsc/raspberrypi.py > > diff --git a/utils/tuning/libtuning/modules/lsc/__init__.py b/utils/tuning/libtuning/modules/lsc/__init__.py > index 47d9b846..7cdecdb8 100644 > --- a/utils/tuning/libtuning/modules/lsc/__init__.py > +++ b/utils/tuning/libtuning/modules/lsc/__init__.py > @@ -3,3 +3,4 @@ > # Copyright (C) 2022, Paul Elder <paul.elder@ideasonboard.com> > > from libtuning.modules.lsc.lsc import LSC > +from libtuning.modules.lsc.raspberrypi import ALSCRaspberryPi > diff --git a/utils/tuning/libtuning/modules/lsc/raspberrypi.py b/utils/tuning/libtuning/modules/lsc/raspberrypi.py > new file mode 100644 > index 00000000..7fd346cc > --- /dev/null > +++ b/utils/tuning/libtuning/modules/lsc/raspberrypi.py > @@ -0,0 +1,250 @@ > +# SPDX-License-Identifier: BSD-2-Clause > +# > +# Copyright (C) 2019, Raspberry Pi Ltd > +# Copyright (C) 2022, Paul Elder <paul.elder@ideasonboard.com> > +# > +# raspberrypi.py - ALSC module for tuning Raspberry Pi > + > +from .lsc import LSC > + > +import libtuning as lt > +import libtuning.utils as utils > + > +from numbers import Number > +import numpy as np > + > + > +class ALSCRaspberryPi(LSC): > + # Override the type name so that the parser can match the entry in the > + # config file. > + type = 'alsc' > + hr_name = 'ALSC (Raspberry Pi)' > + out_name = 'rpi.alsc' > + compatible = ['raspberrypi'] > + > + def __init__(self, *, > + do_color: lt.Param, > + luminance_strength: lt.Param, > + **kwargs): > + super().__init__(**kwargs) > + > + self.do_color = do_color > + self.luminance_strength = luminance_strength > + > + self.output_range = (0, 3.999) > + > + def validate_config(self, config: dict) -> bool: > + if self not in config: > + utils.eprint(f'{self.type} not in config') > + return False > + > + valid = True > + > + conf = config[self] > + > + lum_key = self.luminance_strength.name > + color_key = self.do_color.name > + > + if lum_key not in conf and self.luminance_strength.required: > + utils.eprint(f'{lum_key} is not in config') > + valid = False > + > + if lum_key in conf and (conf[lum_key] < 0 or conf[lum_key] > 1): > + utils.eprint(f'Warning: {lum_key} is not in range [0, 1]; defaulting to 0.5') > + > + if color_key not in conf and self.do_color.required: > + utils.eprint(f'{color_key} is not in config') > + valid = False > + > + return valid > + > + # @return Image color temperature, flattened array of red calibration table > + # (containing {sector size} elements), flattened array of blue > + # calibration table, flattened array of green calibration > + # table > + > + def _do_single_alsc(self, image: lt.Image, do_alsc_colour: bool): > + average_green = np.mean((image.channels[lt.Color.GR:lt.Color.GB + 1]), axis=0) > + > + cg, g = self._lsc_single_channel(average_green, image) > + > + if not do_alsc_colour: > + return image.color, None, None, cg.flatten() > + > + cr, _ = self._lsc_single_channel(image.channels[lt.Color.R], image, g) > + cb, _ = self._lsc_single_channel(image.channels[lt.Color.B], image, g) > + > + # \todo implement debug > + > + return image.color, cr.flatten(), cb.flatten(), cg.flatten() > + > + # @return Red shading table, Blue shading table, Green shading table, > + # number of images processed > + > + def _do_all_alsc(self, images: list, do_alsc_colour: bool, general_conf: dict) -> (list, list, list, Number, int): > + # List of colour temperatures > + list_col = [] > + # Associated calibration tables > + list_cr = [] > + list_cb = [] > + list_cg = [] > + count = 0 > + for image in self._enumerate_lsc_images(images): > + col, cr, cb, cg = self._do_single_alsc(image, do_alsc_colour) > + list_col.append(col) > + list_cr.append(cr) > + list_cb.append(cb) > + list_cg.append(cg) > + count += 1 > + > + # Convert to numpy array for data manipulation > + list_col = np.array(list_col) > + list_cr = np.array(list_cr) > + list_cb = np.array(list_cb) > + list_cg = np.array(list_cg) > + > + cal_cr_list = [] > + cal_cb_list = [] > + > + # Note: Calculation of average corners and center of the shading tables > + # has been removed (which ctt had, as it was being unused) > + > + # \todo Handle the second green table > + > + # Average all values for luminance shading and return one table for all temperatures > + lum_lut = list(utils.round_with_sigfigs(np.mean(list_cg, axis=0), self.output_range)) > + > + if not do_alsc_colour: > + return None, None, lum_lut, count > + > + for ct in sorted(set(list_col)): > + # Average tables for the same colour temperature > + indices = np.where(list_col == ct) > + ct = int(ct) > + t_r = utils.round_with_sigfigs(np.mean(list_cr[indices], axis=0), > + self.output_range) > + t_b = utils.round_with_sigfigs(np.mean(list_cb[indices], axis=0), > + self.output_range) > + > + cr_dict = { > + 'ct': ct, > + 'table': list(t_r) > + } > + cb_dict = { > + 'ct': ct, > + 'table': list(t_b) > + } > + cal_cr_list.append(cr_dict) > + cal_cb_list.append(cb_dict) > + > + return cal_cr_list, cal_cb_list, lum_lut, count > + > + # @brief Calculate sigma from two adjacent gain tables > + def _calcSigma(self, g1, g2): > + g1 = np.reshape(g1, self.sector_shape[::-1]) > + g2 = np.reshape(g2, self.sector_shape[::-1]) > + > + # Apply gains to gain table > + gg = g1 / g2 > + if np.mean(gg) < 1: > + gg = 1 / gg > + > + # For each internal patch, compute average difference between it and > + # its 4 neighbours, then append to list > + diffs = [] > + for i in range(self.sector_shape[1] - 2): > + for j in range(self.sector_shape[0] - 2): > + # Indexing is incremented by 1 since all patches on borders are > + # not counted > + diff = np.abs(gg[i + 1][j + 1] - gg[i][j + 1]) > + diff += np.abs(gg[i + 1][j + 1] - gg[i + 2][j + 1]) > + diff += np.abs(gg[i + 1][j + 1] - gg[i + 1][j]) > + diff += np.abs(gg[i + 1][j + 1] - gg[i + 1][j + 2]) > + diffs.append(diff / 4) > + > + mean_diff = np.mean(diffs) > + return (np.round(mean_diff, 5)) No need for the outer parentheses. > + > + # @brief Obtains sigmas for red and blue, effectively a measure of the > + # 'error' > + def _get_sigma(self, cal_cr_list, cal_cb_list): > + # Provided colour alsc tables were generated for two different colour > + # temperatures sigma is calculated by comparing two calibration temperatures > + # adjacent in colour space > + > + color_temps = [cal['ct'] for cal in cal_cr_list] > + > + # Calculate sigmas for each adjacent color_temps and return worst one > + sigma_rs = [] > + sigma_bs = [] > + for i in range(len(color_temps) - 1): > + sigma_rs.append(self._calcSigma(cal_cr_list[i]['table'], cal_cr_list[i + 1]['table'])) > + sigma_bs.append(self._calcSigma(cal_cb_list[i]['table'], cal_cb_list[i + 1]['table'])) > + > + # Return maximum sigmas, not necessarily from the same colour > + # temperature interval > + sigma_r = max(sigma_rs) if sigma_rs else 0.005 > + sigma_b = max(sigma_bs) if sigma_bs else 0.005 > + > + return sigma_r, sigma_b > + > + def process(self, args, config: dict, images: list, outputs: dict) -> dict: > + output = { > + 'omega': 1.3, > + 'n_iter': 100, > + 'luminance_strength': 0.7 > + } > + > + conf = config[self] > + general_conf = config['general'] > + > + do_alsc_colour = self.do_color.get_value(conf) > + > + # \todo I have no idea where this input parameter is used > + luminance_strength = self.luminance_strength.get_value(conf) > + if luminance_strength < 0 or luminance_strength > 1: > + luminance_strength = 0.5 > + > + output['luminance_strength'] = luminance_strength > + > + # \todo Validate images from greyscale camera and force grescale mode > + # \todo Debug functionality > + > + alsc_out = self._do_all_alsc(images, do_alsc_colour, general_conf) > + # \todo Handle the second green lut > + cal_cr_list, cal_cb_list, luminance_lut, count = alsc_out > + > + if not do_alsc_colour: > + output['luminance_lut'] = luminance_lut > + output['n_iter'] = 0 > + return output > + > + output['calibrations_Cr'] = cal_cr_list > + output['calibrations_Cb'] = cal_cb_list > + output['luminance_lut'] = luminance_lut > + > + # The sigmas determine the strength of the adaptive algorithm, that > + # cleans up any lens shading that has slipped through the alsc. These > + # are determined by measuring a 'worst-case' difference between two > + # alsc tables that are adjacent in colour space. If, however, only one > + # colour temperature has been provided, then this difference can not be > + # computed as only one table is available. > + # To determine the sigmas you would have to estimate the error of an > + # alsc table with only the image it was taken on as a check. To avoid > + # circularity, dfault exaggerated sigmas are used, which can result in > + # too much alsc and is therefore not advised. > + # In general, just take another alsc picture at another colour > + # temperature! > + > + if count == 1: > + output['sigma'] = 0.005 > + output['sigma_Cb'] = 0.005 > + utils.eprint('Warning: Only one alsc calibration found; standard sigmas used for adaptive algorithm.') > + return output > + > + # Obtain worst-case scenario residual sigmas > + sigma_r, sigma_b = self._get_sigma(cal_cr_list, cal_cb_list) > + output['sigma'] = np.round(sigma_r, 5) > + output['sigma_Cb'] = np.round(sigma_b, 5) > + > + return output
diff --git a/utils/tuning/libtuning/modules/lsc/__init__.py b/utils/tuning/libtuning/modules/lsc/__init__.py index 47d9b846..7cdecdb8 100644 --- a/utils/tuning/libtuning/modules/lsc/__init__.py +++ b/utils/tuning/libtuning/modules/lsc/__init__.py @@ -3,3 +3,4 @@ # Copyright (C) 2022, Paul Elder <paul.elder@ideasonboard.com> from libtuning.modules.lsc.lsc import LSC +from libtuning.modules.lsc.raspberrypi import ALSCRaspberryPi diff --git a/utils/tuning/libtuning/modules/lsc/raspberrypi.py b/utils/tuning/libtuning/modules/lsc/raspberrypi.py new file mode 100644 index 00000000..7fd346cc --- /dev/null +++ b/utils/tuning/libtuning/modules/lsc/raspberrypi.py @@ -0,0 +1,250 @@ +# SPDX-License-Identifier: BSD-2-Clause +# +# Copyright (C) 2019, Raspberry Pi Ltd +# Copyright (C) 2022, Paul Elder <paul.elder@ideasonboard.com> +# +# raspberrypi.py - ALSC module for tuning Raspberry Pi + +from .lsc import LSC + +import libtuning as lt +import libtuning.utils as utils + +from numbers import Number +import numpy as np + + +class ALSCRaspberryPi(LSC): + # Override the type name so that the parser can match the entry in the + # config file. + type = 'alsc' + hr_name = 'ALSC (Raspberry Pi)' + out_name = 'rpi.alsc' + compatible = ['raspberrypi'] + + def __init__(self, *, + do_color: lt.Param, + luminance_strength: lt.Param, + **kwargs): + super().__init__(**kwargs) + + self.do_color = do_color + self.luminance_strength = luminance_strength + + self.output_range = (0, 3.999) + + def validate_config(self, config: dict) -> bool: + if self not in config: + utils.eprint(f'{self.type} not in config') + return False + + valid = True + + conf = config[self] + + lum_key = self.luminance_strength.name + color_key = self.do_color.name + + if lum_key not in conf and self.luminance_strength.required: + utils.eprint(f'{lum_key} is not in config') + valid = False + + if lum_key in conf and (conf[lum_key] < 0 or conf[lum_key] > 1): + utils.eprint(f'Warning: {lum_key} is not in range [0, 1]; defaulting to 0.5') + + if color_key not in conf and self.do_color.required: + utils.eprint(f'{color_key} is not in config') + valid = False + + return valid + + # @return Image color temperature, flattened array of red calibration table + # (containing {sector size} elements), flattened array of blue + # calibration table, flattened array of green calibration + # table + + def _do_single_alsc(self, image: lt.Image, do_alsc_colour: bool): + average_green = np.mean((image.channels[lt.Color.GR:lt.Color.GB + 1]), axis=0) + + cg, g = self._lsc_single_channel(average_green, image) + + if not do_alsc_colour: + return image.color, None, None, cg.flatten() + + cr, _ = self._lsc_single_channel(image.channels[lt.Color.R], image, g) + cb, _ = self._lsc_single_channel(image.channels[lt.Color.B], image, g) + + # \todo implement debug + + return image.color, cr.flatten(), cb.flatten(), cg.flatten() + + # @return Red shading table, Blue shading table, Green shading table, + # number of images processed + + def _do_all_alsc(self, images: list, do_alsc_colour: bool, general_conf: dict) -> (list, list, list, Number, int): + # List of colour temperatures + list_col = [] + # Associated calibration tables + list_cr = [] + list_cb = [] + list_cg = [] + count = 0 + for image in self._enumerate_lsc_images(images): + col, cr, cb, cg = self._do_single_alsc(image, do_alsc_colour) + list_col.append(col) + list_cr.append(cr) + list_cb.append(cb) + list_cg.append(cg) + count += 1 + + # Convert to numpy array for data manipulation + list_col = np.array(list_col) + list_cr = np.array(list_cr) + list_cb = np.array(list_cb) + list_cg = np.array(list_cg) + + cal_cr_list = [] + cal_cb_list = [] + + # Note: Calculation of average corners and center of the shading tables + # has been removed (which ctt had, as it was being unused) + + # \todo Handle the second green table + + # Average all values for luminance shading and return one table for all temperatures + lum_lut = list(utils.round_with_sigfigs(np.mean(list_cg, axis=0), self.output_range)) + + if not do_alsc_colour: + return None, None, lum_lut, count + + for ct in sorted(set(list_col)): + # Average tables for the same colour temperature + indices = np.where(list_col == ct) + ct = int(ct) + t_r = utils.round_with_sigfigs(np.mean(list_cr[indices], axis=0), + self.output_range) + t_b = utils.round_with_sigfigs(np.mean(list_cb[indices], axis=0), + self.output_range) + + cr_dict = { + 'ct': ct, + 'table': list(t_r) + } + cb_dict = { + 'ct': ct, + 'table': list(t_b) + } + cal_cr_list.append(cr_dict) + cal_cb_list.append(cb_dict) + + return cal_cr_list, cal_cb_list, lum_lut, count + + # @brief Calculate sigma from two adjacent gain tables + def _calcSigma(self, g1, g2): + g1 = np.reshape(g1, self.sector_shape[::-1]) + g2 = np.reshape(g2, self.sector_shape[::-1]) + + # Apply gains to gain table + gg = g1 / g2 + if np.mean(gg) < 1: + gg = 1 / gg + + # For each internal patch, compute average difference between it and + # its 4 neighbours, then append to list + diffs = [] + for i in range(self.sector_shape[1] - 2): + for j in range(self.sector_shape[0] - 2): + # Indexing is incremented by 1 since all patches on borders are + # not counted + diff = np.abs(gg[i + 1][j + 1] - gg[i][j + 1]) + diff += np.abs(gg[i + 1][j + 1] - gg[i + 2][j + 1]) + diff += np.abs(gg[i + 1][j + 1] - gg[i + 1][j]) + diff += np.abs(gg[i + 1][j + 1] - gg[i + 1][j + 2]) + diffs.append(diff / 4) + + mean_diff = np.mean(diffs) + return (np.round(mean_diff, 5)) + + # @brief Obtains sigmas for red and blue, effectively a measure of the + # 'error' + def _get_sigma(self, cal_cr_list, cal_cb_list): + # Provided colour alsc tables were generated for two different colour + # temperatures sigma is calculated by comparing two calibration temperatures + # adjacent in colour space + + color_temps = [cal['ct'] for cal in cal_cr_list] + + # Calculate sigmas for each adjacent color_temps and return worst one + sigma_rs = [] + sigma_bs = [] + for i in range(len(color_temps) - 1): + sigma_rs.append(self._calcSigma(cal_cr_list[i]['table'], cal_cr_list[i + 1]['table'])) + sigma_bs.append(self._calcSigma(cal_cb_list[i]['table'], cal_cb_list[i + 1]['table'])) + + # Return maximum sigmas, not necessarily from the same colour + # temperature interval + sigma_r = max(sigma_rs) if sigma_rs else 0.005 + sigma_b = max(sigma_bs) if sigma_bs else 0.005 + + return sigma_r, sigma_b + + def process(self, args, config: dict, images: list, outputs: dict) -> dict: + output = { + 'omega': 1.3, + 'n_iter': 100, + 'luminance_strength': 0.7 + } + + conf = config[self] + general_conf = config['general'] + + do_alsc_colour = self.do_color.get_value(conf) + + # \todo I have no idea where this input parameter is used + luminance_strength = self.luminance_strength.get_value(conf) + if luminance_strength < 0 or luminance_strength > 1: + luminance_strength = 0.5 + + output['luminance_strength'] = luminance_strength + + # \todo Validate images from greyscale camera and force grescale mode + # \todo Debug functionality + + alsc_out = self._do_all_alsc(images, do_alsc_colour, general_conf) + # \todo Handle the second green lut + cal_cr_list, cal_cb_list, luminance_lut, count = alsc_out + + if not do_alsc_colour: + output['luminance_lut'] = luminance_lut + output['n_iter'] = 0 + return output + + output['calibrations_Cr'] = cal_cr_list + output['calibrations_Cb'] = cal_cb_list + output['luminance_lut'] = luminance_lut + + # The sigmas determine the strength of the adaptive algorithm, that + # cleans up any lens shading that has slipped through the alsc. These + # are determined by measuring a 'worst-case' difference between two + # alsc tables that are adjacent in colour space. If, however, only one + # colour temperature has been provided, then this difference can not be + # computed as only one table is available. + # To determine the sigmas you would have to estimate the error of an + # alsc table with only the image it was taken on as a check. To avoid + # circularity, dfault exaggerated sigmas are used, which can result in + # too much alsc and is therefore not advised. + # In general, just take another alsc picture at another colour + # temperature! + + if count == 1: + output['sigma'] = 0.005 + output['sigma_Cb'] = 0.005 + utils.eprint('Warning: Only one alsc calibration found; standard sigmas used for adaptive algorithm.') + return output + + # Obtain worst-case scenario residual sigmas + sigma_r, sigma_b = self._get_sigma(cal_cr_list, cal_cb_list) + output['sigma'] = np.round(sigma_r, 5) + output['sigma_Cb'] = np.round(sigma_b, 5) + + return output