Message ID | 20221110173154.488445-3-paul.elder@ideasonboard.com |
---|---|
State | Accepted |
Headers | show |
Series |
|
Related | show |
Hi Paul, Thank you for the patch. On Fri, Nov 11, 2022 at 02:31:44AM +0900, Paul Elder via libcamera-devel wrote: > Implement math helpers for libtuning. This includes: > - Average, a wrapper class for numpy averaging functions > - Gradient, a class that represents gradients, for distributing and > mapping > - Smoothing, a wrapper class for cv2 smoothing functions > > Signed-off-by: Paul Elder <paul.elder@ideasonboard.com> > > --- > Changes in v3: > - Newly split from the first patch "utils: tuning: libtuning: Implement > the core of libtuning" > - See changelog from that patch > --- > utils/tuning/libtuning/average.py | 21 ++++++++ > utils/tuning/libtuning/gradient.py | 75 +++++++++++++++++++++++++++++ > utils/tuning/libtuning/smoothing.py | 24 +++++++++ > 3 files changed, 120 insertions(+) > create mode 100644 utils/tuning/libtuning/average.py > create mode 100644 utils/tuning/libtuning/gradient.py > create mode 100644 utils/tuning/libtuning/smoothing.py > > diff --git a/utils/tuning/libtuning/average.py b/utils/tuning/libtuning/average.py > new file mode 100644 > index 00000000..e28770d7 > --- /dev/null > +++ b/utils/tuning/libtuning/average.py > @@ -0,0 +1,21 @@ > +# SPDX-License-Identifier: GPL-2.0-or-later > +# > +# Copyright (C) 2022, Paul Elder <paul.elder@ideasonboard.com> > +# > +# average.py - Wrapper for numpy averaging functions to enable duck-typing > + > +import numpy as np > + > + > +# @brief Wrapper for np averaging functions so that they can be duck-typed > +class Average(object): > + def __init__(self): > + pass > + > + def average(self, np_array): > + raise NotImplementedError > + > + > +class Mean(Average): > + def average(self, np_array): > + return np.mean(np_array) > diff --git a/utils/tuning/libtuning/gradient.py b/utils/tuning/libtuning/gradient.py > new file mode 100644 > index 00000000..64a96369 > --- /dev/null > +++ b/utils/tuning/libtuning/gradient.py > @@ -0,0 +1,75 @@ > +# SPDX-License-Identifier: GPL-2.0-or-later > +# > +# Copyright (C) 2022, Paul Elder <paul.elder@ideasonboard.com> > +# > +# gradient.py - Gradients that can be used to distribute or map numbers > + > +import libtuning as lt > + > +import math > +from numbers import Number > + > + > +# @brief Gradient for how to allocate pixels to sectors > +# @description There are no parameters for the gradients as the domain is the > +# number of pixels and the range is the number of sectors, and > +# there is only one curve that has a startpoint and endpoint at > +# (0, 0) and at (#pixels, #sectors). The exception is for curves > +# that *do* have multiple solutions for only two points, such as > +# gaussian, and curves of higher polynomial orders if we had them. > +# > +# \todo There will probably be a helper in the Gradient class, as I have a > +# feeling that all the other curves (besides Linear and Gaussian) can be > +# implemented in the same way. > +class Gradient(object): > + def __init__(self): > + pass > + > + # @brief Distribute pixels into sectors (only in one dimension) > + # @param domain Number of pixels > + # @param sectors Number of sectors > + # @return A list of number of pixels in each sector > + def distribute(self, domain: list, sectors: list, ) -> list: Is the training ', ' a Python syntax I don't know about ? Reviewed-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com> > + raise NotImplementedError > + > + # @brief Map a number on a curve > + # @param domain Domain of the curve > + # @param rang Range of the curve > + # @param x Input on the domain of the curve > + # @return y from the range of the curve > + def map(self, domain: tuple, rang: tuple, x: Number) -> Number: > + raise NotImplementedError > + > + > +class Linear(Gradient): > + # @param remainder Mode of handling remainder > + def __init__(self, remainder: lt.Remainder = lt.Remainder.Float): > + self.remainder = remainder > + > + def distribute(self, domain: list, sectors: list) -> list: > + size = domain / sectors > + rem = domain % sectors > + > + if rem == 0: > + return [int(size)] * sectors > + > + size = math.ceil(size) > + rem = domain % size > + output_sectors = [int(size)] * (sectors - 1) > + > + if self.remainder == lt.Remainder.Float: > + size = domain / sectors > + output_sectors = [size] * sectors > + elif self.remainder == lt.Remainder.DistributeFront: > + output_sectors.append(int(rem)) > + elif self.remainder == lt.Remainder.DistributeBack: > + output_sectors.insert(0, int(rem)) > + else: > + raise ValueError > + > + return output_sectors > + > + def map(self, domain: tuple, rang: tuple, x: Number) -> Number: > + m = (rang[1] - rang[0]) / (domain[1] - domain[0]) > + b = rang[0] - m * domain[0] > + return m * x + b > diff --git a/utils/tuning/libtuning/smoothing.py b/utils/tuning/libtuning/smoothing.py > new file mode 100644 > index 00000000..b8a5a242 > --- /dev/null > +++ b/utils/tuning/libtuning/smoothing.py > @@ -0,0 +1,24 @@ > +# SPDX-License-Identifier: GPL-2.0-or-later > +# > +# Copyright (C) 2022, Paul Elder <paul.elder@ideasonboard.com> > +# > +# smoothing.py - Wrapper for cv2 smoothing functions to enable duck-typing > + > +import cv2 > + > + > +# @brief Wrapper for cv2 smoothing functions so that they can be duck-typed > +class Smoothing(object): > + def __init__(self): > + pass > + > + def smoothing(self, src): > + raise NotImplementedError > + > + > +class MedianBlur(Smoothing): > + def __init__(self, ksize): > + self.ksize = ksize > + > + def smoothing(self, src): > + return cv2.medianBlur(src.astype('float32'), self.ksize).astype('float64')
On Wed, Nov 23, 2022 at 03:35:46AM +0200, Laurent Pinchart wrote: > Hi Paul, > > Thank you for the patch. > > On Fri, Nov 11, 2022 at 02:31:44AM +0900, Paul Elder via libcamera-devel wrote: > > Implement math helpers for libtuning. This includes: > > - Average, a wrapper class for numpy averaging functions > > - Gradient, a class that represents gradients, for distributing and > > mapping > > - Smoothing, a wrapper class for cv2 smoothing functions > > > > Signed-off-by: Paul Elder <paul.elder@ideasonboard.com> > > > > --- > > Changes in v3: > > - Newly split from the first patch "utils: tuning: libtuning: Implement > > the core of libtuning" > > - See changelog from that patch > > --- > > utils/tuning/libtuning/average.py | 21 ++++++++ > > utils/tuning/libtuning/gradient.py | 75 +++++++++++++++++++++++++++++ > > utils/tuning/libtuning/smoothing.py | 24 +++++++++ > > 3 files changed, 120 insertions(+) > > create mode 100644 utils/tuning/libtuning/average.py > > create mode 100644 utils/tuning/libtuning/gradient.py > > create mode 100644 utils/tuning/libtuning/smoothing.py > > > > diff --git a/utils/tuning/libtuning/average.py b/utils/tuning/libtuning/average.py > > new file mode 100644 > > index 00000000..e28770d7 > > --- /dev/null > > +++ b/utils/tuning/libtuning/average.py > > @@ -0,0 +1,21 @@ > > +# SPDX-License-Identifier: GPL-2.0-or-later > > +# > > +# Copyright (C) 2022, Paul Elder <paul.elder@ideasonboard.com> > > +# > > +# average.py - Wrapper for numpy averaging functions to enable duck-typing > > + > > +import numpy as np > > + > > + > > +# @brief Wrapper for np averaging functions so that they can be duck-typed > > +class Average(object): > > + def __init__(self): > > + pass > > + > > + def average(self, np_array): > > + raise NotImplementedError > > + > > + > > +class Mean(Average): > > + def average(self, np_array): > > + return np.mean(np_array) > > diff --git a/utils/tuning/libtuning/gradient.py b/utils/tuning/libtuning/gradient.py > > new file mode 100644 > > index 00000000..64a96369 > > --- /dev/null > > +++ b/utils/tuning/libtuning/gradient.py > > @@ -0,0 +1,75 @@ > > +# SPDX-License-Identifier: GPL-2.0-or-later > > +# > > +# Copyright (C) 2022, Paul Elder <paul.elder@ideasonboard.com> > > +# > > +# gradient.py - Gradients that can be used to distribute or map numbers > > + > > +import libtuning as lt > > + > > +import math > > +from numbers import Number > > + > > + > > +# @brief Gradient for how to allocate pixels to sectors > > +# @description There are no parameters for the gradients as the domain is the > > +# number of pixels and the range is the number of sectors, and > > +# there is only one curve that has a startpoint and endpoint at > > +# (0, 0) and at (#pixels, #sectors). The exception is for curves > > +# that *do* have multiple solutions for only two points, such as > > +# gaussian, and curves of higher polynomial orders if we had them. > > +# > > +# \todo There will probably be a helper in the Gradient class, as I have a > > +# feeling that all the other curves (besides Linear and Gaussian) can be > > +# implemented in the same way. > > +class Gradient(object): > > + def __init__(self): > > + pass > > + > > + # @brief Distribute pixels into sectors (only in one dimension) > > + # @param domain Number of pixels > > + # @param sectors Number of sectors > > + # @return A list of number of pixels in each sector > > + def distribute(self, domain: list, sectors: list, ) -> list: > > Is the training ', ' a Python syntax I don't know about ? Yeah I think it's a new feature called a typo :p > > Reviewed-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Thanks, Paul > > > + raise NotImplementedError > > + > > + # @brief Map a number on a curve > > + # @param domain Domain of the curve > > + # @param rang Range of the curve > > + # @param x Input on the domain of the curve > > + # @return y from the range of the curve > > + def map(self, domain: tuple, rang: tuple, x: Number) -> Number: > > + raise NotImplementedError > > + > > + > > +class Linear(Gradient): > > + # @param remainder Mode of handling remainder > > + def __init__(self, remainder: lt.Remainder = lt.Remainder.Float): > > + self.remainder = remainder > > + > > + def distribute(self, domain: list, sectors: list) -> list: > > + size = domain / sectors > > + rem = domain % sectors > > + > > + if rem == 0: > > + return [int(size)] * sectors > > + > > + size = math.ceil(size) > > + rem = domain % size > > + output_sectors = [int(size)] * (sectors - 1) > > + > > + if self.remainder == lt.Remainder.Float: > > + size = domain / sectors > > + output_sectors = [size] * sectors > > + elif self.remainder == lt.Remainder.DistributeFront: > > + output_sectors.append(int(rem)) > > + elif self.remainder == lt.Remainder.DistributeBack: > > + output_sectors.insert(0, int(rem)) > > + else: > > + raise ValueError > > + > > + return output_sectors > > + > > + def map(self, domain: tuple, rang: tuple, x: Number) -> Number: > > + m = (rang[1] - rang[0]) / (domain[1] - domain[0]) > > + b = rang[0] - m * domain[0] > > + return m * x + b > > diff --git a/utils/tuning/libtuning/smoothing.py b/utils/tuning/libtuning/smoothing.py > > new file mode 100644 > > index 00000000..b8a5a242 > > --- /dev/null > > +++ b/utils/tuning/libtuning/smoothing.py > > @@ -0,0 +1,24 @@ > > +# SPDX-License-Identifier: GPL-2.0-or-later > > +# > > +# Copyright (C) 2022, Paul Elder <paul.elder@ideasonboard.com> > > +# > > +# smoothing.py - Wrapper for cv2 smoothing functions to enable duck-typing > > + > > +import cv2 > > + > > + > > +# @brief Wrapper for cv2 smoothing functions so that they can be duck-typed > > +class Smoothing(object): > > + def __init__(self): > > + pass > > + > > + def smoothing(self, src): > > + raise NotImplementedError > > + > > + > > +class MedianBlur(Smoothing): > > + def __init__(self, ksize): > > + self.ksize = ksize > > + > > + def smoothing(self, src): > > + return cv2.medianBlur(src.astype('float32'), self.ksize).astype('float64')
diff --git a/utils/tuning/libtuning/average.py b/utils/tuning/libtuning/average.py new file mode 100644 index 00000000..e28770d7 --- /dev/null +++ b/utils/tuning/libtuning/average.py @@ -0,0 +1,21 @@ +# SPDX-License-Identifier: GPL-2.0-or-later +# +# Copyright (C) 2022, Paul Elder <paul.elder@ideasonboard.com> +# +# average.py - Wrapper for numpy averaging functions to enable duck-typing + +import numpy as np + + +# @brief Wrapper for np averaging functions so that they can be duck-typed +class Average(object): + def __init__(self): + pass + + def average(self, np_array): + raise NotImplementedError + + +class Mean(Average): + def average(self, np_array): + return np.mean(np_array) diff --git a/utils/tuning/libtuning/gradient.py b/utils/tuning/libtuning/gradient.py new file mode 100644 index 00000000..64a96369 --- /dev/null +++ b/utils/tuning/libtuning/gradient.py @@ -0,0 +1,75 @@ +# SPDX-License-Identifier: GPL-2.0-or-later +# +# Copyright (C) 2022, Paul Elder <paul.elder@ideasonboard.com> +# +# gradient.py - Gradients that can be used to distribute or map numbers + +import libtuning as lt + +import math +from numbers import Number + + +# @brief Gradient for how to allocate pixels to sectors +# @description There are no parameters for the gradients as the domain is the +# number of pixels and the range is the number of sectors, and +# there is only one curve that has a startpoint and endpoint at +# (0, 0) and at (#pixels, #sectors). The exception is for curves +# that *do* have multiple solutions for only two points, such as +# gaussian, and curves of higher polynomial orders if we had them. +# +# \todo There will probably be a helper in the Gradient class, as I have a +# feeling that all the other curves (besides Linear and Gaussian) can be +# implemented in the same way. +class Gradient(object): + def __init__(self): + pass + + # @brief Distribute pixels into sectors (only in one dimension) + # @param domain Number of pixels + # @param sectors Number of sectors + # @return A list of number of pixels in each sector + def distribute(self, domain: list, sectors: list, ) -> list: + raise NotImplementedError + + # @brief Map a number on a curve + # @param domain Domain of the curve + # @param rang Range of the curve + # @param x Input on the domain of the curve + # @return y from the range of the curve + def map(self, domain: tuple, rang: tuple, x: Number) -> Number: + raise NotImplementedError + + +class Linear(Gradient): + # @param remainder Mode of handling remainder + def __init__(self, remainder: lt.Remainder = lt.Remainder.Float): + self.remainder = remainder + + def distribute(self, domain: list, sectors: list) -> list: + size = domain / sectors + rem = domain % sectors + + if rem == 0: + return [int(size)] * sectors + + size = math.ceil(size) + rem = domain % size + output_sectors = [int(size)] * (sectors - 1) + + if self.remainder == lt.Remainder.Float: + size = domain / sectors + output_sectors = [size] * sectors + elif self.remainder == lt.Remainder.DistributeFront: + output_sectors.append(int(rem)) + elif self.remainder == lt.Remainder.DistributeBack: + output_sectors.insert(0, int(rem)) + else: + raise ValueError + + return output_sectors + + def map(self, domain: tuple, rang: tuple, x: Number) -> Number: + m = (rang[1] - rang[0]) / (domain[1] - domain[0]) + b = rang[0] - m * domain[0] + return m * x + b diff --git a/utils/tuning/libtuning/smoothing.py b/utils/tuning/libtuning/smoothing.py new file mode 100644 index 00000000..b8a5a242 --- /dev/null +++ b/utils/tuning/libtuning/smoothing.py @@ -0,0 +1,24 @@ +# SPDX-License-Identifier: GPL-2.0-or-later +# +# Copyright (C) 2022, Paul Elder <paul.elder@ideasonboard.com> +# +# smoothing.py - Wrapper for cv2 smoothing functions to enable duck-typing + +import cv2 + + +# @brief Wrapper for cv2 smoothing functions so that they can be duck-typed +class Smoothing(object): + def __init__(self): + pass + + def smoothing(self, src): + raise NotImplementedError + + +class MedianBlur(Smoothing): + def __init__(self, ksize): + self.ksize = ksize + + def smoothing(self, src): + return cv2.medianBlur(src.astype('float32'), self.ksize).astype('float64')
Implement math helpers for libtuning. This includes: - Average, a wrapper class for numpy averaging functions - Gradient, a class that represents gradients, for distributing and mapping - Smoothing, a wrapper class for cv2 smoothing functions Signed-off-by: Paul Elder <paul.elder@ideasonboard.com> --- Changes in v3: - Newly split from the first patch "utils: tuning: libtuning: Implement the core of libtuning" - See changelog from that patch --- utils/tuning/libtuning/average.py | 21 ++++++++ utils/tuning/libtuning/gradient.py | 75 +++++++++++++++++++++++++++++ utils/tuning/libtuning/smoothing.py | 24 +++++++++ 3 files changed, 120 insertions(+) create mode 100644 utils/tuning/libtuning/average.py create mode 100644 utils/tuning/libtuning/gradient.py create mode 100644 utils/tuning/libtuning/smoothing.py