[v1,09/11] libipa: Add bayesian AWB algorithm
diff mbox series

Message ID 20250109115412.356768-10-stefan.klug@ideasonboard.com
State Superseded
Headers show
Series
  • Add Bayesian AWB algorithm to libipa and rkisp1
Related show

Commit Message

Stefan Klug Jan. 9, 2025, 11:54 a.m. UTC
The bayesian AWB algorithm is an AWB algorithm that takes prior
probabilities for a given light source dependent on the current lux
level into account.

The biggest improvement compared to the grey world model comes from the
search of the ideal white point on the CT curve. The algorithm walks the
CT curve to minimize the colour error for a given statistics. After the
minimium is found it additionally tries to search the area around that
spot and also off the curve. So even without defined prior probabilities
this algorithm provides much better results than the grey world
algorithm.

The logic for this code was taken from the RaspberryPi implementation.
The logic was only minimally adjusted for usage with the rkisp1 and a
few things were left out (see doxygen doc for the AwbBayes class). The
code is refactored to better fit the libcamera code style and to make
use of the syntactic sugar provided by the Interpolator and Vector
classes.

Signed-off-by: Stefan Klug <stefan.klug@ideasonboard.com>
---
 src/ipa/libipa/awb_bayes.cpp | 457 +++++++++++++++++++++++++++++++++++
 src/ipa/libipa/awb_bayes.h   |  67 +++++
 src/ipa/libipa/meson.build   |   2 +
 3 files changed, 526 insertions(+)
 create mode 100644 src/ipa/libipa/awb_bayes.cpp
 create mode 100644 src/ipa/libipa/awb_bayes.h

Comments

Paul Elder Jan. 14, 2025, 10:40 p.m. UTC | #1
On Thu, Jan 09, 2025 at 12:54:00PM +0100, Stefan Klug wrote:
> The bayesian AWB algorithm is an AWB algorithm that takes prior
> probabilities for a given light source dependent on the current lux
> level into account.
> 
> The biggest improvement compared to the grey world model comes from the
> search of the ideal white point on the CT curve. The algorithm walks the
> CT curve to minimize the colour error for a given statistics. After the
> minimium is found it additionally tries to search the area around that
> spot and also off the curve. So even without defined prior probabilities
> this algorithm provides much better results than the grey world
> algorithm.
> 
> The logic for this code was taken from the RaspberryPi implementation.
> The logic was only minimally adjusted for usage with the rkisp1 and a
> few things were left out (see doxygen doc for the AwbBayes class). The
> code is refactored to better fit the libcamera code style and to make
> use of the syntactic sugar provided by the Interpolator and Vector
> classes.
> 
> Signed-off-by: Stefan Klug <stefan.klug@ideasonboard.com>
> ---
>  src/ipa/libipa/awb_bayes.cpp | 457 +++++++++++++++++++++++++++++++++++
>  src/ipa/libipa/awb_bayes.h   |  67 +++++
>  src/ipa/libipa/meson.build   |   2 +
>  3 files changed, 526 insertions(+)
>  create mode 100644 src/ipa/libipa/awb_bayes.cpp
>  create mode 100644 src/ipa/libipa/awb_bayes.h
> 
> diff --git a/src/ipa/libipa/awb_bayes.cpp b/src/ipa/libipa/awb_bayes.cpp
> new file mode 100644
> index 000000000000..1e69ecd3e3f3
> --- /dev/null
> +++ b/src/ipa/libipa/awb_bayes.cpp
> @@ -0,0 +1,457 @@
> +/* SPDX-License-Identifier: LGPL-2.1-or-later */
> +/*
> + * Copyright (C) 2019, Raspberry Pi Ltd
> + * Copyright (C) 2024 Ideas on Board Oy
> + *
> + * Implementation of a bayesian AWB algorithm
> + */
> +
> +#include "awb_bayes.h"
> +
> +#include <cmath>
> +
> +#include <libcamera/base/log.h>
> +#include <libcamera/control_ids.h>
> +
> +#include "colours.h"
> +
> +/**
> + * \file awb_bayes.h
> + * \brief Implementation of bayesian auto white balance algorithm
> + *
> + * This implementation is based on the initial implementation done by
> + * RaspberryPi.
> + * \todo: Documentation
> + *
> + * \todo As the statistics module of the rkisp1 provides less data than the one
> + * from the RaspberryPi (vc4). The RaspberryPi statistics measure a grid of
> + * zones while the rkisp1 ony measures a single area. Therefore this algorithm
> + * doesn't contain all the features implemented by RaspberryPi.
> + * The following parts are not implemented:
> + *
> + * - min_pixels: minimum proportion of pixels counted within AWB region for it
> + *   to be "useful"
> + * - min_g: minimum G value of those pixels, to be regarded a "useful"
> + * - min_regions: number of AWB regions that must be "useful" in order to do the
> + *   AWB calculation
> + * - deltaLimit: clamp on colour error term (so as not to penalize non-grey
> + *   excessively)
> + * - bias_proportion: The biasProportion parameter adds a small proportion of
> + *   the counted pixels to a region biased to the biasCT colour temperature.
> + *   A typical value for biasProportion would be between 0.05 to 0.1.
> + * - bias_ct: CT target for the search bias
> + * - sensitivityR: red sensitivity ratio (set to canonical sensor's R/G divided
> + *   by this sensor's R/G)
> + * - sensitivityB: blue sensitivity ratio (set to canonical sensor's B/G divided
> + *   by this sensor's B/G)
> + */
> +
> +namespace libcamera {
> +
> +LOG_DECLARE_CATEGORY(Awb)
> +
> +namespace ipa {
> +
> +/**
> + * \brief Step size control for CT search
> + */
> +constexpr double kSearchStep = 0.2;
> +
> +/**
> + * \copydoc Interpolator::interpolate()
> + */
> +template<>
> +void Interpolator<Pwl>::interpolate(const Pwl &a, const Pwl &b, Pwl &dest, double lambda)
> +{
> +	dest = Pwl::combine(a, b,
> +			    [=](double /*x*/, double y0, double y1) -> double {
> +				    return y0 * (1.0 - lambda) + y1 * lambda;
> +			    });
> +}
> +
> +/**
> + * \class AwbBayes
> + * \brief Implementation of a bayesian auto white balance algorithm
> + *
> + * In a bayesian AWB algorithm the auto white balance estimation is improved by
> + * taking the likelihood of a given lightsource based on the estimated lux level
> + * into account. E.g. If it is very bright we can assume that we are outside and
> + * that colour temperatures around 6500 are preferred.
> + *
> + * The second part of this algorithm is the search for the most likely colour
> + * temperature. It is implemented in AwbBayes::coarseSearch() and in
> + * AwbBayes::fineSearch(). The search works very well without prior likelihoods
> + * and therefore the algorithm itself provides very good results even without
> + * prior likelihoods.
> + */
> +
> +/**
> + * \var AwbBayes::transversePos_
> + * \brief How far to wander off CT curve towards "more purple"
> + */
> +
> +/**
> + * \var AwbBayes::transverseNeg_
> + * \brief How far to wander off CT curve towards "more green"
> + */
> +
> +/**
> + * \var AwbBayes::currentMode_
> + * \brief The currently selected mode
> + */
> +
> +int AwbBayes::init(const YamlObject &tuningData)
> +{
> +	int ret = colourGainCurve_.readYaml(tuningData["colourGains"], "ct", "gains");
> +	if (ret) {
> +		LOG(Awb, Error)
> +			<< "Failed to parse 'colourGains' "
> +			<< "parameter from tuning file";
> +		return ret;
> +	}
> +
> +	ctR_.clear();
> +	ctB_.clear();
> +	for (const auto &[ct, g] : colourGainCurve_.data()) {
> +		ctR_.append(ct, 1.0 / g[0]);
> +		ctB_.append(ct, 1.0 / g[1]);
> +	}
> +
> +	/* We will want the inverse functions of these too. */
> +	ctRInverse_ = ctR_.inverse().first;
> +	ctBInverse_ = ctB_.inverse().first;
> +
> +	ret = readPriors(tuningData);
> +	if (ret) {
> +		LOG(Awb, Error) << "Failed to read priors";
> +		return ret;
> +	}
> +
> +	ret = parseModeConfigs(tuningData);
> +	if (ret) {
> +		LOG(Awb, Error)
> +			<< "Failed to parse mode parameter from tuning file";
> +		return ret;
> +	}
> +	currentMode_ = &modes_[controls::AwbAuto];
> +
> +	transversePos_ = tuningData["transversePos"].get<double>(0.01);
> +	transverseNeg_ = tuningData["transverseNeg"].get<double>(0.01);
> +	if (transversePos_ <= 0 || transverseNeg_ <= 0) {
> +		LOG(Awb, Error) << "AwbConfig: transversePos/Neg must be > 0";
> +		return -EINVAL;
> +	}
> +
> +	return 0;
> +}
> +
> +int AwbBayes::readPriors(const YamlObject &tuningData)
> +{
> +	const auto &priorsList = tuningData["priors"];
> +	std::map<uint32_t, Pwl> priors;
> +
> +	if (!priorsList) {
> +		LOG(Awb, Error) << "No priors specified";
> +		return -EINVAL;
> +	}
> +
> +	for (const auto &p : priorsList.asList()) {
> +		if (!p.contains("lux")) {
> +			LOG(Awb, Error) << "Missing lux value";
> +			return -EINVAL;
> +		}
> +
> +		uint32_t lux = p["lux"].get<uint32_t>(0);
> +		if (priors.count(lux)) {
> +			LOG(Awb, Error) << "Duplicate prior for lux value " << lux;
> +			return -EINVAL;
> +		}
> +
> +		std::vector<uint32_t> temperatures =
> +			p["ct"].getList<uint32_t>().value_or(std::vector<uint32_t>{});
> +		std::vector<double> probabilites =
> +			p["probability"].getList<double>().value_or(std::vector<double>{});
> +
> +		if (temperatures.size() != probabilites.size()) {
> +			LOG(Awb, Error)
> +				<< "Ct and probability array sizes are unequal";
> +			return -EINVAL;
> +		}
> +
> +		if (temperatures.empty()) {
> +			LOG(Awb, Error)
> +				<< "Ct and probability arrays are empty";
> +			return -EINVAL;
> +		}
> +
> +		std::map<int, double> ctToProbability;
> +		for (unsigned int i = 0; i < temperatures.size(); i++) {
> +			int t = temperatures[i];
> +			if (ctToProbability.count(t)) {
> +				LOG(Awb, Error) << "Duplicate ct value";
> +				return -EINVAL;
> +			}
> +
> +			ctToProbability[t] = probabilites[i];
> +		}
> +
> +		auto &pwl = priors[lux];
> +		for (const auto &[ct, prob] : ctToProbability) {
> +			pwl.append(ct, prob);
> +		}
> +	}
> +
> +	if (priors.empty()) {
> +		LOG(Awb, Error) << "No priors specified";
> +		;

I think we don't need this line.


Other than that, looks good to me.

Reviewed-by: Paul Elder <paul.elder@ideasonboard.com>

> +		return -EINVAL;
> +	}
> +
> +	priors_.setData(std::move(priors));
> +
> +	return 0;
> +}
> +
> +void AwbBayes::handleControls(const ControlList &controls)
> +{
> +	auto mode = controls.get(controls::AwbMode);
> +	if (mode) {
> +		auto it = modes_.find(static_cast<controls::AwbModeEnum>(*mode));
> +		if (it != modes_.end())
> +			currentMode_ = &it->second;
> +		else
> +			LOG(Awb, Error) << "Unknown AWB mode";
> +	}
> +}
> +
> +RGB<double> AwbBayes::gainsFromColourTemperature(double colourTemperature)
> +{
> +	/*
> +	 * \todo: In the RaspberryPi code, the ct curve was interpolated in
> +	 * the white point space (1/x) not in gains space. This feels counter
> +	 * intuitive, as the gains are in linear space. But I can't prove it.
> +	 */
> +	const auto &gains = colourGainCurve_.getInterpolated(colourTemperature);
> +	return { { gains[0], 1.0, gains[1] } };
> +}
> +
> +AwbResult AwbBayes::calculateAwb(const AwbStats &stats, int lux)
> +{
> +	ipa::Pwl prior;
> +	if (lux > 0) {
> +		prior = priors_.getInterpolated(lux);
> +		prior.map([](double x, double y) {
> +			LOG(Awb, Debug) << "(" << x << "," << y << ")";
> +		});
> +	} else {
> +		prior.append(0, 1.0);
> +	}
> +
> +	double t = coarseSearch(prior, stats);
> +	double r = ctR_.eval(t);
> +	double b = ctB_.eval(t);
> +	LOG(Awb, Debug)
> +		<< "After coarse search: r " << r << " b " << b << " (gains r "
> +		<< 1 / r << " b " << 1 / b << ")";
> +
> +	/*
> +	 * Original comment from RaspberryPi:
> +	 * Not entirely sure how to handle the fine search yet. Mostly the
> +	 * estimated CT is already good enough, but the fine search allows us to
> +	 * wander transversely off the CT curve. Under some illuminants, where
> +	 * there may be more or less green light, this may prove beneficial,
> +	 * though I probably need more real datasets before deciding exactly how
> +	 * this should be controlled and tuned.
> +	 */
> +	fineSearch(t, r, b, prior, stats);
> +	LOG(Awb, Debug)
> +		<< "After fine search: r " << r << " b " << b << " (gains r "
> +		<< 1 / r << " b " << 1 / b << ")";
> +
> +	return { { { 1.0 / r, 1.0, 1.0 / b } }, t };
> +}
> +
> +double AwbBayes::coarseSearch(const ipa::Pwl &prior, const AwbStats &stats) const
> +{
> +	std::vector<Pwl::Point> points;
> +	size_t bestPoint = 0;
> +	double t = currentMode_->ctLo;
> +	int spanR = -1;
> +	int spanB = -1;
> +
> +	/* Step down the CT curve evaluating log likelihood. */
> +	while (true) {
> +		double r = ctR_.eval(t, &spanR);
> +		double b = ctB_.eval(t, &spanB);
> +		RGB<double> gains({ 1 / r, 1.0, 1 / b });
> +		double delta2Sum = stats.computeColourError(gains);
> +		double priorLogLikelihood = prior.eval(prior.domain().clamp(t));
> +		double finalLogLikelihood = delta2Sum - priorLogLikelihood;
> +
> +		LOG(Awb, Debug) << "Coarse search t: " << t
> +				<< " gains: " << gains
> +				<< " error: " << delta2Sum
> +				<< " prior: " << priorLogLikelihood
> +				<< " likelihood: " << finalLogLikelihood;
> +
> +		points.push_back({ { t, finalLogLikelihood } });
> +		if (points.back().y() < points[bestPoint].y())
> +			bestPoint = points.size() - 1;
> +
> +		if (t == currentMode_->ctHi)
> +			break;
> +
> +		/*
> +		 * Ensure even steps along the r/b curve by scaling them by the
> +		 * current t.
> +		 */
> +		t = std::min(t + t / 10 * kSearchStep, currentMode_->ctHi);
> +	}
> +
> +	t = points[bestPoint].x();
> +	LOG(Awb, Debug) << "Coarse search found CT " << t;
> +
> +	/*
> +	 * We have the best point of the search, but refine it with a quadratic
> +	 * interpolation around its neighbors.
> +	 */
> +	if (points.size() > 2) {
> +		bestPoint = std::clamp(bestPoint, 1ul, points.size() - 2);
> +		t = interpolateQuadratic(points[bestPoint - 1],
> +					 points[bestPoint],
> +					 points[bestPoint + 1]);
> +		LOG(Awb, Debug)
> +			<< "After quadratic refinement, coarse search has CT "
> +			<< t;
> +	}
> +
> +	return t;
> +}
> +
> +void AwbBayes::fineSearch(double &t, double &r, double &b, ipa::Pwl const &prior, const AwbStats &stats) const
> +{
> +	int spanR = -1;
> +	int spanB = -1;
> +	double step = t / 10 * kSearchStep * 0.1;
> +	int nsteps = 5;
> +	ctR_.eval(t, &spanR);
> +	ctB_.eval(t, &spanB);
> +	double rDiff = ctR_.eval(t + nsteps * step, &spanR) -
> +		       ctR_.eval(t - nsteps * step, &spanR);
> +	double bDiff = ctB_.eval(t + nsteps * step, &spanB) -
> +		       ctB_.eval(t - nsteps * step, &spanB);
> +	Pwl::Point transverse({ bDiff, -rDiff });
> +	if (transverse.length2() < 1e-6)
> +		return;
> +	/*
> +	 * transverse is a unit vector orthogonal to the b vs. r function
> +	 * (pointing outwards with r and b increasing)
> +	 */
> +	transverse = transverse / transverse.length();
> +	double bestLogLikelihood = 0;
> +	double bestT = 0;
> +	Pwl::Point bestRB;
> +	double transverseRange = transverseNeg_ + transversePos_;
> +	const int maxNumDeltas = 12;
> +
> +	/* a transverse step approximately every 0.01 r/b units */
> +	int numDeltas = floor(transverseRange * 100 + 0.5) + 1;
> +	numDeltas = std::clamp(numDeltas, 3, maxNumDeltas);
> +
> +	/*
> +	 * Step down CT curve. March a bit further if the transverse range is
> +	 * large.
> +	 */
> +	nsteps += numDeltas;
> +	for (int i = -nsteps; i <= nsteps; i++) {
> +		double tTest = t + i * step;
> +		double priorLogLikelihood =
> +			prior.eval(prior.domain().clamp(tTest));
> +		Pwl::Point rbStart{ { ctR_.eval(tTest, &spanR),
> +				      ctB_.eval(tTest, &spanB) } };
> +		Pwl::Point samples[maxNumDeltas];
> +		int bestPoint = 0;
> +
> +		/*
> +		 * Sample numDeltas points transversely *off* the CT curve
> +		 * in the range [-transverseNeg, transversePos].
> +		 * The x values of a sample contains the distance and the y
> +		 * value contains the corresponding log likelihood.
> +		 */
> +		double transverseStep = transverseRange / (numDeltas - 1);
> +		for (int j = 0; j < numDeltas; j++) {
> +			auto &p = samples[j];
> +			p.x() = -transverseNeg_ + transverseStep * j;
> +			Pwl::Point rbTest = rbStart + transverse * p.x();
> +			RGB<double> gains({ 1 / rbTest[0], 1.0, 1 / rbTest[1] });
> +			double delta2Sum = stats.computeColourError(gains);
> +			p.y() = delta2Sum - priorLogLikelihood;
> +
> +			if (p.y() < samples[bestPoint].y())
> +				bestPoint = j;
> +		}
> +
> +		/*
> +		 * We have all samples transversely across the CT curve,
> +		 * now let's do a quadratic interpolation for the best result.
> +		 */
> +		bestPoint = std::clamp(bestPoint, 1, numDeltas - 2);
> +		double bestOffset = interpolateQuadratic(samples[bestPoint - 1],
> +							 samples[bestPoint],
> +							 samples[bestPoint + 1]);
> +		Pwl::Point rbTest = rbStart + transverse * bestOffset;
> +		RGB<double> gains({ 1 / rbTest[0], 1.0, 1 / rbTest[1] });
> +		double delta2Sum = stats.computeColourError(gains);
> +		double finalLogLikelihood = delta2Sum - priorLogLikelihood;
> +		LOG(Awb, Debug)
> +			<< "Fine search t: " << tTest
> +			<< " r: " << rbTest[0]
> +			<< " b: " << rbTest[1]
> +			<< " offset: " << bestOffset
> +			<< " likelihood: " << finalLogLikelihood
> +			<< (finalLogLikelihood < bestLogLikelihood ? " NEW BEST" : "");
> +
> +		if (bestT == 0 || finalLogLikelihood < bestLogLikelihood) {
> +			bestLogLikelihood = finalLogLikelihood;
> +			bestT = tTest;
> +			bestRB = rbTest;
> +		}
> +	}
> +
> +	t = bestT;
> +	r = bestRB[0];
> +	b = bestRB[1];
> +	LOG(Awb, Debug)
> +		<< "Fine search found t " << t << " r " << r << " b " << b;
> +}
> +
> +/**
> + * \brief Find extremum of function
> + * \param[in] a First point
> + * \param[in] b Second point
> + * \param[in] c Third point
> + *
> + * Given 3 points on a curve, find the extremum of the function in that interval
> + * by fitting a quadratic.
> + *
> + * \return The x value of the extremum clamped to the interval [a.x(), c.x()]
> + */
> +double AwbBayes::interpolateQuadratic(Pwl::Point const &a, Pwl::Point const &b,
> +				      Pwl::Point const &c) const
> +{
> +	const double eps = 1e-3;
> +	Pwl::Point ca = c - a;
> +	Pwl::Point ba = b - a;
> +	double denominator = 2 * (ba.y() * ca.x() - ca.y() * ba.x());
> +	if (std::abs(denominator) > eps) {
> +		double numerator = ba.y() * ca.x() * ca.x() - ca.y() * ba.x() * ba.x();
> +		double result = numerator / denominator + a.x();
> +		return std::max(a.x(), std::min(c.x(), result));
> +	}
> +	/* has degenerated to straight line segment */
> +	return a.y() < c.y() - eps ? a.x() : (c.y() < a.y() - eps ? c.x() : b.x());
> +}
> +
> +} /* namespace ipa */
> +
> +} /* namespace libcamera */
> diff --git a/src/ipa/libipa/awb_bayes.h b/src/ipa/libipa/awb_bayes.h
> new file mode 100644
> index 000000000000..5284f0ca4cc0
> --- /dev/null
> +++ b/src/ipa/libipa/awb_bayes.h
> @@ -0,0 +1,67 @@
> +/* SPDX-License-Identifier: LGPL-2.1-or-later */
> +/*
> + * Copyright (C) 2024 Ideas on Board Oy
> + *
> + * Base class for bayes AWB algorithms
> + */
> +
> +#pragma once
> +
> +#include <map>
> +#include <memory>
> +#include <tuple>
> +#include <vector>
> +
> +#include <libcamera/base/utils.h>
> +
> +#include <libcamera/control_ids.h>
> +#include <libcamera/controls.h>
> +
> +#include "libcamera/internal/yaml_parser.h"
> +
> +#include "awb.h"
> +#include "interpolator.h"
> +#include "pwl.h"
> +#include "vector.h"
> +
> +namespace libcamera {
> +
> +namespace ipa {
> +
> +class AwbBayes : public AwbAlgorithm
> +{
> +public:
> +	AwbBayes() = default;
> +
> +	int init(const YamlObject &tuningData) override;
> +	AwbResult calculateAwb(const AwbStats &stats, int lux) override;
> +	RGB<double> gainsFromColourTemperature(double temperatureK) override;
> +	void handleControls(const ControlList &controls) override;
> +
> +private:
> +	int readPriors(const YamlObject &tuningData);
> +
> +	void fineSearch(double &t, double &r, double &b, ipa::Pwl const &prior,
> +			const AwbStats &stats) const;
> +	double coarseSearch(const ipa::Pwl &prior, const AwbStats &stats) const;
> +	double interpolateQuadratic(ipa::Pwl::Point const &a,
> +				    ipa::Pwl::Point const &b,
> +				    ipa::Pwl::Point const &c) const;
> +
> +	Interpolator<Pwl> priors_;
> +	Interpolator<Vector<double, 2>> colourGainCurve_;
> +
> +	ipa::Pwl ctR_;
> +	ipa::Pwl ctB_;
> +	ipa::Pwl ctRInverse_;
> +	ipa::Pwl ctBInverse_;
> +
> +	double transversePos_;
> +	double transverseNeg_;
> +
> +	ModeConfig *currentMode_ = nullptr;
> +};
> +
> +} /* namespace ipa */
> +
> +} /* namespace libcamera */
> diff --git a/src/ipa/libipa/meson.build b/src/ipa/libipa/meson.build
> index c550a6eb45b6..b519c8146d7c 100644
> --- a/src/ipa/libipa/meson.build
> +++ b/src/ipa/libipa/meson.build
> @@ -3,6 +3,7 @@
>  libipa_headers = files([
>      'agc_mean_luminance.h',
>      'algorithm.h',
> +    'awb_bayes.h',
>      'awb_grey.h',
>      'awb.h',
>      'camera_sensor_helper.h',
> @@ -22,6 +23,7 @@ libipa_headers = files([
>  libipa_sources = files([
>      'agc_mean_luminance.cpp',
>      'algorithm.cpp',
> +    'awb_bayes.cpp',
>      'awb_grey.cpp',
>      'awb.cpp',
>      'camera_sensor_helper.cpp',
> -- 
> 2.43.0
>
Daniel Scally Jan. 21, 2025, 10:57 a.m. UTC | #2
On 09/01/2025 11:54, Stefan Klug wrote:
> The bayesian AWB algorithm is an AWB algorithm that takes prior
> probabilities for a given light source dependent on the current lux
> level into account.
>
> The biggest improvement compared to the grey world model comes from the
> search of the ideal white point on the CT curve. The algorithm walks the
> CT curve to minimize the colour error for a given statistics. After the
> minimium is found it additionally tries to search the area around that
> spot and also off the curve. So even without defined prior probabilities
> this algorithm provides much better results than the grey world
> algorithm.
>
> The logic for this code was taken from the RaspberryPi implementation.
> The logic was only minimally adjusted for usage with the rkisp1 and a
> few things were left out (see doxygen doc for the AwbBayes class). The
> code is refactored to better fit the libcamera code style and to make
> use of the syntactic sugar provided by the Interpolator and Vector
> classes.
>
> Signed-off-by: Stefan Klug <stefan.klug@ideasonboard.com>
> ---
>   src/ipa/libipa/awb_bayes.cpp | 457 +++++++++++++++++++++++++++++++++++
>   src/ipa/libipa/awb_bayes.h   |  67 +++++
>   src/ipa/libipa/meson.build   |   2 +
>   3 files changed, 526 insertions(+)
>   create mode 100644 src/ipa/libipa/awb_bayes.cpp
>   create mode 100644 src/ipa/libipa/awb_bayes.h
>
> diff --git a/src/ipa/libipa/awb_bayes.cpp b/src/ipa/libipa/awb_bayes.cpp
> new file mode 100644
> index 000000000000..1e69ecd3e3f3
> --- /dev/null
> +++ b/src/ipa/libipa/awb_bayes.cpp
> @@ -0,0 +1,457 @@
> +/* SPDX-License-Identifier: LGPL-2.1-or-later */
> +/*
> + * Copyright (C) 2019, Raspberry Pi Ltd
> + * Copyright (C) 2024 Ideas on Board Oy
> + *
> + * Implementation of a bayesian AWB algorithm
> + */
> +
> +#include "awb_bayes.h"
> +
> +#include <cmath>
> +
> +#include <libcamera/base/log.h>
> +#include <libcamera/control_ids.h>
> +
> +#include "colours.h"
> +
> +/**
> + * \file awb_bayes.h
> + * \brief Implementation of bayesian auto white balance algorithm
> + *
> + * This implementation is based on the initial implementation done by
> + * RaspberryPi.
> + * \todo: Documentation
> + *
> + * \todo As the statistics module of the rkisp1 provides less data than the one
> + * from the RaspberryPi (vc4). The RaspberryPi statistics measure a grid of
> + * zones while the rkisp1 ony measures a single area.


I don't think I'd mention the rkisp1 here...perhaps just that not all the features of the 
RaspberryPi implementation are ported over because they rely on features of its hardware that aren't 
universally applicable.

> Therefore this algorithm
> + * doesn't contain all the features implemented by RaspberryPi.
> + * The following parts are not implemented:
> + *
> + * - min_pixels: minimum proportion of pixels counted within AWB region for it
> + *   to be "useful"
> + * - min_g: minimum G value of those pixels, to be regarded a "useful"
> + * - min_regions: number of AWB regions that must be "useful" in order to do the
> + *   AWB calculation
> + * - deltaLimit: clamp on colour error term (so as not to penalize non-grey
> + *   excessively)
> + * - bias_proportion: The biasProportion parameter adds a small proportion of
> + *   the counted pixels to a region biased to the biasCT colour temperature.
> + *   A typical value for biasProportion would be between 0.05 to 0.1.
> + * - bias_ct: CT target for the search bias
> + * - sensitivityR: red sensitivity ratio (set to canonical sensor's R/G divided
> + *   by this sensor's R/G)
> + * - sensitivityB: blue sensitivity ratio (set to canonical sensor's B/G divided
> + *   by this sensor's B/G)
> + */
> +
> +namespace libcamera {
> +
> +LOG_DECLARE_CATEGORY(Awb)
> +
> +namespace ipa {
> +
> +/**
> + * \brief Step size control for CT search
> + */
> +constexpr double kSearchStep = 0.2;
> +
> +/**
> + * \copydoc Interpolator::interpolate()
> + */
> +template<>
> +void Interpolator<Pwl>::interpolate(const Pwl &a, const Pwl &b, Pwl &dest, double lambda)
> +{
> +	dest = Pwl::combine(a, b,
> +			    [=](double /*x*/, double y0, double y1) -> double {
Why is x commented here?
> +				    return y0 * (1.0 - lambda) + y1 * lambda;
> +			    });
> +}
> +
> +/**
> + * \class AwbBayes
> + * \brief Implementation of a bayesian auto white balance algorithm
> + *
> + * In a bayesian AWB algorithm the auto white balance estimation is improved by
> + * taking the likelihood of a given lightsource based on the estimated lux level
> + * into account. E.g. If it is very bright we can assume that we are outside and
> + * that colour temperatures around 6500 are preferred.
> + *
> + * The second part of this algorithm is the search for the most likely colour
> + * temperature. It is implemented in AwbBayes::coarseSearch() and in
> + * AwbBayes::fineSearch(). The search works very well without prior likelihoods
> + * and therefore the algorithm itself provides very good results even without
> + * prior likelihoods.
> + */
> +
> +/**
> + * \var AwbBayes::transversePos_
> + * \brief How far to wander off CT curve towards "more purple"
> + */
> +
> +/**
> + * \var AwbBayes::transverseNeg_
> + * \brief How far to wander off CT curve towards "more green"
> + */
> +
> +/**
> + * \var AwbBayes::currentMode_
> + * \brief The currently selected mode
> + */
> +
Personally I think that that some example in the documentation of the tuning data format would be 
nice...if we're expecting people to stick to using libtuning to generate them then that might seem 
like noise that's unnecessary but I think it would make it much easier to follow the function with 
the format available. Up to you though.
> +int AwbBayes::init(const YamlObject &tuningData)
> +{
> +	int ret = colourGainCurve_.readYaml(tuningData["colourGains"], "ct", "gains");
> +	if (ret) {
> +		LOG(Awb, Error)
> +			<< "Failed to parse 'colourGains' "
> +			<< "parameter from tuning file";
> +		return ret;
> +	}
> +
> +	ctR_.clear();
> +	ctB_.clear();
This shouldn't be necessary should it?
> +	for (const auto &[ct, g] : colourGainCurve_.data()) {
> +		ctR_.append(ct, 1.0 / g[0]);
> +		ctB_.append(ct, 1.0 / g[1]);
> +	}
> +
> +	/* We will want the inverse functions of these too. */
> +	ctRInverse_ = ctR_.inverse().first;
> +	ctBInverse_ = ctB_.inverse().first;
> +
> +	ret = readPriors(tuningData);
> +	if (ret) {
> +		LOG(Awb, Error) << "Failed to read priors";
> +		return ret;
> +	}
> +
> +	ret = parseModeConfigs(tuningData);
> +	if (ret) {
> +		LOG(Awb, Error)
> +			<< "Failed to parse mode parameter from tuning file";
> +		return ret;
> +	}
> +	currentMode_ = &modes_[controls::AwbAuto];
> +
> +	transversePos_ = tuningData["transversePos"].get<double>(0.01);
> +	transverseNeg_ = tuningData["transverseNeg"].get<double>(0.01);
> +	if (transversePos_ <= 0 || transverseNeg_ <= 0) {
> +		LOG(Awb, Error) << "AwbConfig: transversePos/Neg must be > 0";
Shouldn't need "AwbConfig" here I think
> +		return -EINVAL;
> +	}
> +
> +	return 0;
> +}
> +
> +int AwbBayes::readPriors(const YamlObject &tuningData)
> +{
> +	const auto &priorsList = tuningData["priors"];
> +	std::map<uint32_t, Pwl> priors;
> +
> +	if (!priorsList) {
> +		LOG(Awb, Error) << "No priors specified";
> +		return -EINVAL;
> +	}
> +
> +	for (const auto &p : priorsList.asList()) {
> +		if (!p.contains("lux")) {
> +			LOG(Awb, Error) << "Missing lux value";
> +			return -EINVAL;
> +		}
> +
> +		uint32_t lux = p["lux"].get<uint32_t>(0);
> +		if (priors.count(lux)) {
> +			LOG(Awb, Error) << "Duplicate prior for lux value " << lux;
> +			return -EINVAL;
> +		}
> +
> +		std::vector<uint32_t> temperatures =
> +			p["ct"].getList<uint32_t>().value_or(std::vector<uint32_t>{});
> +		std::vector<double> probabilites =
> +			p["probability"].getList<double>().value_or(std::vector<double>{});
> +
> +		if (temperatures.size() != probabilites.size()) {
> +			LOG(Awb, Error)
> +				<< "Ct and probability array sizes are unequal";
> +			return -EINVAL;
> +		}
> +
> +		if (temperatures.empty()) {
> +			LOG(Awb, Error)
> +				<< "Ct and probability arrays are empty";
> +			return -EINVAL;
> +		}
> +
> +		std::map<int, double> ctToProbability;
> +		for (unsigned int i = 0; i < temperatures.size(); i++) {
> +			int t = temperatures[i];
> +			if (ctToProbability.count(t)) {
> +				LOG(Awb, Error) << "Duplicate ct value";
> +				return -EINVAL;
> +			}
> +
> +			ctToProbability[t] = probabilites[i];
> +		}
> +
> +		auto &pwl = priors[lux];
> +		for (const auto &[ct, prob] : ctToProbability) {
> +			pwl.append(ct, prob);
> +		}
> +	}
> +
> +	if (priors.empty()) {
> +		LOG(Awb, Error) << "No priors specified";
> +		;
> +		return -EINVAL;
> +	}
> +
> +	priors_.setData(std::move(priors));
> +
> +	return 0;
> +}
> +
> +void AwbBayes::handleControls(const ControlList &controls)
> +{
> +	auto mode = controls.get(controls::AwbMode);
> +	if (mode) {
> +		auto it = modes_.find(static_cast<controls::AwbModeEnum>(*mode));
> +		if (it != modes_.end())
> +			currentMode_ = &it->second;
> +		else
> +			LOG(Awb, Error) << "Unknown AWB mode";
> +	}
> +}


This could be part of the base class I think, and I think I would lean towards "Unsupported" rather 
than "Unknown", as it seems more likely we'll be asked to set a mode the tuning data doesn't 
instantiate rather than one we don't recognise at all.

> +
> +RGB<double> AwbBayes::gainsFromColourTemperature(double colourTemperature)
> +{
> +	/*
> +	 * \todo: In the RaspberryPi code, the ct curve was interpolated in
> +	 * the white point space (1/x) not in gains space. This feels counter
> +	 * intuitive, as the gains are in linear space. But I can't prove it.
> +	 */
> +	const auto &gains = colourGainCurve_.getInterpolated(colourTemperature);
> +	return { { gains[0], 1.0, gains[1] } };
> +}
> +
> +AwbResult AwbBayes::calculateAwb(const AwbStats &stats, int lux)
> +{
> +	ipa::Pwl prior;
> +	if (lux > 0) {
> +		prior = priors_.getInterpolated(lux);
> +		prior.map([](double x, double y) {
> +			LOG(Awb, Debug) << "(" << x << "," << y << ")";
> +		});
> +	} else {
> +		prior.append(0, 1.0);
> +	}
> +
> +	double t = coarseSearch(prior, stats);
> +	double r = ctR_.eval(t);
> +	double b = ctB_.eval(t);
> +	LOG(Awb, Debug)
> +		<< "After coarse search: r " << r << " b " << b << " (gains r "
> +		<< 1 / r << " b " << 1 / b << ")";
> +
> +	/*
> +	 * Original comment from RaspberryPi:
> +	 * Not entirely sure how to handle the fine search yet. Mostly the
> +	 * estimated CT is already good enough, but the fine search allows us to
> +	 * wander transversely off the CT curve. Under some illuminants, where
> +	 * there may be more or less green light, this may prove beneficial,
> +	 * though I probably need more real datasets before deciding exactly how
> +	 * this should be controlled and tuned.
> +	 */
> +	fineSearch(t, r, b, prior, stats);
> +	LOG(Awb, Debug)
> +		<< "After fine search: r " << r << " b " << b << " (gains r "
> +		<< 1 / r << " b " << 1 / b << ")";
> +
> +	return { { { 1.0 / r, 1.0, 1.0 / b } }, t };
> +}
> +
> +double AwbBayes::coarseSearch(const ipa::Pwl &prior, const AwbStats &stats) const
> +{
> +	std::vector<Pwl::Point> points;
> +	size_t bestPoint = 0;
> +	double t = currentMode_->ctLo;
> +	int spanR = -1;
> +	int spanB = -1;
> +
> +	/* Step down the CT curve evaluating log likelihood. */
> +	while (true) {
> +		double r = ctR_.eval(t, &spanR);
> +		double b = ctB_.eval(t, &spanB);
> +		RGB<double> gains({ 1 / r, 1.0, 1 / b });
> +		double delta2Sum = stats.computeColourError(gains);
> +		double priorLogLikelihood = prior.eval(prior.domain().clamp(t));
> +		double finalLogLikelihood = delta2Sum - priorLogLikelihood;
> +
> +		LOG(Awb, Debug) << "Coarse search t: " << t
> +				<< " gains: " << gains
> +				<< " error: " << delta2Sum
> +				<< " prior: " << priorLogLikelihood
> +				<< " likelihood: " << finalLogLikelihood;
> +
> +		points.push_back({ { t, finalLogLikelihood } });
> +		if (points.back().y() < points[bestPoint].y())
> +			bestPoint = points.size() - 1;
> +
> +		if (t == currentMode_->ctHi)
> +			break;
> +
> +		/*
> +		 * Ensure even steps along the r/b curve by scaling them by the
> +		 * current t.
> +		 */
> +		t = std::min(t + t / 10 * kSearchStep, currentMode_->ctHi);
> +	}
> +
> +	t = points[bestPoint].x();
> +	LOG(Awb, Debug) << "Coarse search found CT " << t;
> +
> +	/*
> +	 * We have the best point of the search, but refine it with a quadratic
> +	 * interpolation around its neighbors.
> +	 */
> +	if (points.size() > 2) {
> +		bestPoint = std::clamp(bestPoint, 1ul, points.size() - 2);
> +		t = interpolateQuadratic(points[bestPoint - 1],
> +					 points[bestPoint],
> +					 points[bestPoint + 1]);
> +		LOG(Awb, Debug)
> +			<< "After quadratic refinement, coarse search has CT "
> +			<< t;
> +	}
> +
> +	return t;
> +}
> +
> +void AwbBayes::fineSearch(double &t, double &r, double &b, ipa::Pwl const &prior, const AwbStats &stats) const
> +{
> +	int spanR = -1;
> +	int spanB = -1;
> +	double step = t / 10 * kSearchStep * 0.1;
> +	int nsteps = 5;
> +	ctR_.eval(t, &spanR);
> +	ctB_.eval(t, &spanB);
> +	double rDiff = ctR_.eval(t + nsteps * step, &spanR) -
> +		       ctR_.eval(t - nsteps * step, &spanR);
> +	double bDiff = ctB_.eval(t + nsteps * step, &spanB) -
> +		       ctB_.eval(t - nsteps * step, &spanB);
> +	Pwl::Point transverse({ bDiff, -rDiff });
> +	if (transverse.length2() < 1e-6)
> +		return;
> +	/*
> +	 * transverse is a unit vector orthogonal to the b vs. r function
> +	 * (pointing outwards with r and b increasing)
> +	 */
> +	transverse = transverse / transverse.length();
> +	double bestLogLikelihood = 0;
> +	double bestT = 0;
> +	Pwl::Point bestRB;
> +	double transverseRange = transverseNeg_ + transversePos_;
> +	const int maxNumDeltas = 12;
> +
> +	/* a transverse step approximately every 0.01 r/b units */
> +	int numDeltas = floor(transverseRange * 100 + 0.5) + 1;
> +	numDeltas = std::clamp(numDeltas, 3, maxNumDeltas);
> +
> +	/*
> +	 * Step down CT curve. March a bit further if the transverse range is
> +	 * large.
> +	 */
> +	nsteps += numDeltas;
> +	for (int i = -nsteps; i <= nsteps; i++) {
> +		double tTest = t + i * step;
> +		double priorLogLikelihood =
> +			prior.eval(prior.domain().clamp(tTest));
> +		Pwl::Point rbStart{ { ctR_.eval(tTest, &spanR),
> +				      ctB_.eval(tTest, &spanB) } };
> +		Pwl::Point samples[maxNumDeltas];
> +		int bestPoint = 0;
> +
> +		/*
> +		 * Sample numDeltas points transversely *off* the CT curve
> +		 * in the range [-transverseNeg, transversePos].
> +		 * The x values of a sample contains the distance and the y
> +		 * value contains the corresponding log likelihood.
> +		 */
> +		double transverseStep = transverseRange / (numDeltas - 1);
> +		for (int j = 0; j < numDeltas; j++) {
> +			auto &p = samples[j];
> +			p.x() = -transverseNeg_ + transverseStep * j;
> +			Pwl::Point rbTest = rbStart + transverse * p.x();
> +			RGB<double> gains({ 1 / rbTest[0], 1.0, 1 / rbTest[1] });
> +			double delta2Sum = stats.computeColourError(gains);
> +			p.y() = delta2Sum - priorLogLikelihood;
> +
> +			if (p.y() < samples[bestPoint].y())
> +				bestPoint = j;
> +		}
> +
> +		/*
> +		 * We have all samples transversely across the CT curve,
> +		 * now let's do a quadratic interpolation for the best result.
> +		 */
> +		bestPoint = std::clamp(bestPoint, 1, numDeltas - 2);
> +		double bestOffset = interpolateQuadratic(samples[bestPoint - 1],
> +							 samples[bestPoint],
> +							 samples[bestPoint + 1]);
> +		Pwl::Point rbTest = rbStart + transverse * bestOffset;
> +		RGB<double> gains({ 1 / rbTest[0], 1.0, 1 / rbTest[1] });
> +		double delta2Sum = stats.computeColourError(gains);
> +		double finalLogLikelihood = delta2Sum - priorLogLikelihood;
> +		LOG(Awb, Debug)
> +			<< "Fine search t: " << tTest
> +			<< " r: " << rbTest[0]
> +			<< " b: " << rbTest[1]
> +			<< " offset: " << bestOffset
> +			<< " likelihood: " << finalLogLikelihood
> +			<< (finalLogLikelihood < bestLogLikelihood ? " NEW BEST" : "");
> +
> +		if (bestT == 0 || finalLogLikelihood < bestLogLikelihood) {
> +			bestLogLikelihood = finalLogLikelihood;
> +			bestT = tTest;
> +			bestRB = rbTest;
> +		}
> +	}
> +
> +	t = bestT;
> +	r = bestRB[0];
> +	b = bestRB[1];
> +	LOG(Awb, Debug)
> +		<< "Fine search found t " << t << " r " << r << " b " << b;
> +}
> +
> +/**
> + * \brief Find extremum of function
> + * \param[in] a First point
> + * \param[in] b Second point
> + * \param[in] c Third point
> + *
> + * Given 3 points on a curve, find the extremum of the function in that interval
> + * by fitting a quadratic.
> + *
> + * \return The x value of the extremum clamped to the interval [a.x(), c.x()]
> + */
> +double AwbBayes::interpolateQuadratic(Pwl::Point const &a, Pwl::Point const &b,
> +				      Pwl::Point const &c) const
> +{
> +	const double eps = 1e-3;
> +	Pwl::Point ca = c - a;
> +	Pwl::Point ba = b - a;
> +	double denominator = 2 * (ba.y() * ca.x() - ca.y() * ba.x());
> +	if (std::abs(denominator) > eps) {
> +		double numerator = ba.y() * ca.x() * ca.x() - ca.y() * ba.x() * ba.x();
> +		double result = numerator / denominator + a.x();
> +		return std::max(a.x(), std::min(c.x(), result));
> +	}
> +	/* has degenerated to straight line segment */
> +	return a.y() < c.y() - eps ? a.x() : (c.y() < a.y() - eps ? c.x() : b.x());
> +}

A candidate for a helper perhaps, though doesn't have to be done now.


All really minor points:


Reviewed-by: Daniel Scally <dan.scally@ideasonboard.com>

> +
> +} /* namespace ipa */
> +
> +} /* namespace libcamera */
> diff --git a/src/ipa/libipa/awb_bayes.h b/src/ipa/libipa/awb_bayes.h
> new file mode 100644
> index 000000000000..5284f0ca4cc0
> --- /dev/null
> +++ b/src/ipa/libipa/awb_bayes.h
> @@ -0,0 +1,67 @@
> +/* SPDX-License-Identifier: LGPL-2.1-or-later */
> +/*
> + * Copyright (C) 2024 Ideas on Board Oy
> + *
> + * Base class for bayes AWB algorithms
> + */
> +
> +#pragma once
> +
> +#include <map>
> +#include <memory>
> +#include <tuple>
> +#include <vector>
> +
> +#include <libcamera/base/utils.h>
> +
> +#include <libcamera/control_ids.h>
> +#include <libcamera/controls.h>
> +
> +#include "libcamera/internal/yaml_parser.h"
> +
> +#include "awb.h"
> +#include "interpolator.h"
> +#include "pwl.h"
> +#include "vector.h"
> +
> +namespace libcamera {
> +
> +namespace ipa {
> +
> +class AwbBayes : public AwbAlgorithm
> +{
> +public:
> +	AwbBayes() = default;
> +
> +	int init(const YamlObject &tuningData) override;
> +	AwbResult calculateAwb(const AwbStats &stats, int lux) override;
> +	RGB<double> gainsFromColourTemperature(double temperatureK) override;
> +	void handleControls(const ControlList &controls) override;
> +
> +private:
> +	int readPriors(const YamlObject &tuningData);
> +
> +	void fineSearch(double &t, double &r, double &b, ipa::Pwl const &prior,
> +			const AwbStats &stats) const;
> +	double coarseSearch(const ipa::Pwl &prior, const AwbStats &stats) const;
> +	double interpolateQuadratic(ipa::Pwl::Point const &a,
> +				    ipa::Pwl::Point const &b,
> +				    ipa::Pwl::Point const &c) const;
> +
> +	Interpolator<Pwl> priors_;
> +	Interpolator<Vector<double, 2>> colourGainCurve_;
> +
> +	ipa::Pwl ctR_;
> +	ipa::Pwl ctB_;
> +	ipa::Pwl ctRInverse_;
> +	ipa::Pwl ctBInverse_;
> +
> +	double transversePos_;
> +	double transverseNeg_;
> +
> +	ModeConfig *currentMode_ = nullptr;
> +};
> +
> +} /* namespace ipa */
> +
> +} /* namespace libcamera */
> diff --git a/src/ipa/libipa/meson.build b/src/ipa/libipa/meson.build
> index c550a6eb45b6..b519c8146d7c 100644
> --- a/src/ipa/libipa/meson.build
> +++ b/src/ipa/libipa/meson.build
> @@ -3,6 +3,7 @@
>   libipa_headers = files([
>       'agc_mean_luminance.h',
>       'algorithm.h',
> +    'awb_bayes.h',
>       'awb_grey.h',
>       'awb.h',
>       'camera_sensor_helper.h',
> @@ -22,6 +23,7 @@ libipa_headers = files([
>   libipa_sources = files([
>       'agc_mean_luminance.cpp',
>       'algorithm.cpp',
> +    'awb_bayes.cpp',
>       'awb_grey.cpp',
>       'awb.cpp',
>       'camera_sensor_helper.cpp',

Patch
diff mbox series

diff --git a/src/ipa/libipa/awb_bayes.cpp b/src/ipa/libipa/awb_bayes.cpp
new file mode 100644
index 000000000000..1e69ecd3e3f3
--- /dev/null
+++ b/src/ipa/libipa/awb_bayes.cpp
@@ -0,0 +1,457 @@ 
+/* SPDX-License-Identifier: LGPL-2.1-or-later */
+/*
+ * Copyright (C) 2019, Raspberry Pi Ltd
+ * Copyright (C) 2024 Ideas on Board Oy
+ *
+ * Implementation of a bayesian AWB algorithm
+ */
+
+#include "awb_bayes.h"
+
+#include <cmath>
+
+#include <libcamera/base/log.h>
+#include <libcamera/control_ids.h>
+
+#include "colours.h"
+
+/**
+ * \file awb_bayes.h
+ * \brief Implementation of bayesian auto white balance algorithm
+ *
+ * This implementation is based on the initial implementation done by
+ * RaspberryPi.
+ * \todo: Documentation
+ *
+ * \todo As the statistics module of the rkisp1 provides less data than the one
+ * from the RaspberryPi (vc4). The RaspberryPi statistics measure a grid of
+ * zones while the rkisp1 ony measures a single area. Therefore this algorithm
+ * doesn't contain all the features implemented by RaspberryPi.
+ * The following parts are not implemented:
+ *
+ * - min_pixels: minimum proportion of pixels counted within AWB region for it
+ *   to be "useful"
+ * - min_g: minimum G value of those pixels, to be regarded a "useful"
+ * - min_regions: number of AWB regions that must be "useful" in order to do the
+ *   AWB calculation
+ * - deltaLimit: clamp on colour error term (so as not to penalize non-grey
+ *   excessively)
+ * - bias_proportion: The biasProportion parameter adds a small proportion of
+ *   the counted pixels to a region biased to the biasCT colour temperature.
+ *   A typical value for biasProportion would be between 0.05 to 0.1.
+ * - bias_ct: CT target for the search bias
+ * - sensitivityR: red sensitivity ratio (set to canonical sensor's R/G divided
+ *   by this sensor's R/G)
+ * - sensitivityB: blue sensitivity ratio (set to canonical sensor's B/G divided
+ *   by this sensor's B/G)
+ */
+
+namespace libcamera {
+
+LOG_DECLARE_CATEGORY(Awb)
+
+namespace ipa {
+
+/**
+ * \brief Step size control for CT search
+ */
+constexpr double kSearchStep = 0.2;
+
+/**
+ * \copydoc Interpolator::interpolate()
+ */
+template<>
+void Interpolator<Pwl>::interpolate(const Pwl &a, const Pwl &b, Pwl &dest, double lambda)
+{
+	dest = Pwl::combine(a, b,
+			    [=](double /*x*/, double y0, double y1) -> double {
+				    return y0 * (1.0 - lambda) + y1 * lambda;
+			    });
+}
+
+/**
+ * \class AwbBayes
+ * \brief Implementation of a bayesian auto white balance algorithm
+ *
+ * In a bayesian AWB algorithm the auto white balance estimation is improved by
+ * taking the likelihood of a given lightsource based on the estimated lux level
+ * into account. E.g. If it is very bright we can assume that we are outside and
+ * that colour temperatures around 6500 are preferred.
+ *
+ * The second part of this algorithm is the search for the most likely colour
+ * temperature. It is implemented in AwbBayes::coarseSearch() and in
+ * AwbBayes::fineSearch(). The search works very well without prior likelihoods
+ * and therefore the algorithm itself provides very good results even without
+ * prior likelihoods.
+ */
+
+/**
+ * \var AwbBayes::transversePos_
+ * \brief How far to wander off CT curve towards "more purple"
+ */
+
+/**
+ * \var AwbBayes::transverseNeg_
+ * \brief How far to wander off CT curve towards "more green"
+ */
+
+/**
+ * \var AwbBayes::currentMode_
+ * \brief The currently selected mode
+ */
+
+int AwbBayes::init(const YamlObject &tuningData)
+{
+	int ret = colourGainCurve_.readYaml(tuningData["colourGains"], "ct", "gains");
+	if (ret) {
+		LOG(Awb, Error)
+			<< "Failed to parse 'colourGains' "
+			<< "parameter from tuning file";
+		return ret;
+	}
+
+	ctR_.clear();
+	ctB_.clear();
+	for (const auto &[ct, g] : colourGainCurve_.data()) {
+		ctR_.append(ct, 1.0 / g[0]);
+		ctB_.append(ct, 1.0 / g[1]);
+	}
+
+	/* We will want the inverse functions of these too. */
+	ctRInverse_ = ctR_.inverse().first;
+	ctBInverse_ = ctB_.inverse().first;
+
+	ret = readPriors(tuningData);
+	if (ret) {
+		LOG(Awb, Error) << "Failed to read priors";
+		return ret;
+	}
+
+	ret = parseModeConfigs(tuningData);
+	if (ret) {
+		LOG(Awb, Error)
+			<< "Failed to parse mode parameter from tuning file";
+		return ret;
+	}
+	currentMode_ = &modes_[controls::AwbAuto];
+
+	transversePos_ = tuningData["transversePos"].get<double>(0.01);
+	transverseNeg_ = tuningData["transverseNeg"].get<double>(0.01);
+	if (transversePos_ <= 0 || transverseNeg_ <= 0) {
+		LOG(Awb, Error) << "AwbConfig: transversePos/Neg must be > 0";
+		return -EINVAL;
+	}
+
+	return 0;
+}
+
+int AwbBayes::readPriors(const YamlObject &tuningData)
+{
+	const auto &priorsList = tuningData["priors"];
+	std::map<uint32_t, Pwl> priors;
+
+	if (!priorsList) {
+		LOG(Awb, Error) << "No priors specified";
+		return -EINVAL;
+	}
+
+	for (const auto &p : priorsList.asList()) {
+		if (!p.contains("lux")) {
+			LOG(Awb, Error) << "Missing lux value";
+			return -EINVAL;
+		}
+
+		uint32_t lux = p["lux"].get<uint32_t>(0);
+		if (priors.count(lux)) {
+			LOG(Awb, Error) << "Duplicate prior for lux value " << lux;
+			return -EINVAL;
+		}
+
+		std::vector<uint32_t> temperatures =
+			p["ct"].getList<uint32_t>().value_or(std::vector<uint32_t>{});
+		std::vector<double> probabilites =
+			p["probability"].getList<double>().value_or(std::vector<double>{});
+
+		if (temperatures.size() != probabilites.size()) {
+			LOG(Awb, Error)
+				<< "Ct and probability array sizes are unequal";
+			return -EINVAL;
+		}
+
+		if (temperatures.empty()) {
+			LOG(Awb, Error)
+				<< "Ct and probability arrays are empty";
+			return -EINVAL;
+		}
+
+		std::map<int, double> ctToProbability;
+		for (unsigned int i = 0; i < temperatures.size(); i++) {
+			int t = temperatures[i];
+			if (ctToProbability.count(t)) {
+				LOG(Awb, Error) << "Duplicate ct value";
+				return -EINVAL;
+			}
+
+			ctToProbability[t] = probabilites[i];
+		}
+
+		auto &pwl = priors[lux];
+		for (const auto &[ct, prob] : ctToProbability) {
+			pwl.append(ct, prob);
+		}
+	}
+
+	if (priors.empty()) {
+		LOG(Awb, Error) << "No priors specified";
+		;
+		return -EINVAL;
+	}
+
+	priors_.setData(std::move(priors));
+
+	return 0;
+}
+
+void AwbBayes::handleControls(const ControlList &controls)
+{
+	auto mode = controls.get(controls::AwbMode);
+	if (mode) {
+		auto it = modes_.find(static_cast<controls::AwbModeEnum>(*mode));
+		if (it != modes_.end())
+			currentMode_ = &it->second;
+		else
+			LOG(Awb, Error) << "Unknown AWB mode";
+	}
+}
+
+RGB<double> AwbBayes::gainsFromColourTemperature(double colourTemperature)
+{
+	/*
+	 * \todo: In the RaspberryPi code, the ct curve was interpolated in
+	 * the white point space (1/x) not in gains space. This feels counter
+	 * intuitive, as the gains are in linear space. But I can't prove it.
+	 */
+	const auto &gains = colourGainCurve_.getInterpolated(colourTemperature);
+	return { { gains[0], 1.0, gains[1] } };
+}
+
+AwbResult AwbBayes::calculateAwb(const AwbStats &stats, int lux)
+{
+	ipa::Pwl prior;
+	if (lux > 0) {
+		prior = priors_.getInterpolated(lux);
+		prior.map([](double x, double y) {
+			LOG(Awb, Debug) << "(" << x << "," << y << ")";
+		});
+	} else {
+		prior.append(0, 1.0);
+	}
+
+	double t = coarseSearch(prior, stats);
+	double r = ctR_.eval(t);
+	double b = ctB_.eval(t);
+	LOG(Awb, Debug)
+		<< "After coarse search: r " << r << " b " << b << " (gains r "
+		<< 1 / r << " b " << 1 / b << ")";
+
+	/*
+	 * Original comment from RaspberryPi:
+	 * Not entirely sure how to handle the fine search yet. Mostly the
+	 * estimated CT is already good enough, but the fine search allows us to
+	 * wander transversely off the CT curve. Under some illuminants, where
+	 * there may be more or less green light, this may prove beneficial,
+	 * though I probably need more real datasets before deciding exactly how
+	 * this should be controlled and tuned.
+	 */
+	fineSearch(t, r, b, prior, stats);
+	LOG(Awb, Debug)
+		<< "After fine search: r " << r << " b " << b << " (gains r "
+		<< 1 / r << " b " << 1 / b << ")";
+
+	return { { { 1.0 / r, 1.0, 1.0 / b } }, t };
+}
+
+double AwbBayes::coarseSearch(const ipa::Pwl &prior, const AwbStats &stats) const
+{
+	std::vector<Pwl::Point> points;
+	size_t bestPoint = 0;
+	double t = currentMode_->ctLo;
+	int spanR = -1;
+	int spanB = -1;
+
+	/* Step down the CT curve evaluating log likelihood. */
+	while (true) {
+		double r = ctR_.eval(t, &spanR);
+		double b = ctB_.eval(t, &spanB);
+		RGB<double> gains({ 1 / r, 1.0, 1 / b });
+		double delta2Sum = stats.computeColourError(gains);
+		double priorLogLikelihood = prior.eval(prior.domain().clamp(t));
+		double finalLogLikelihood = delta2Sum - priorLogLikelihood;
+
+		LOG(Awb, Debug) << "Coarse search t: " << t
+				<< " gains: " << gains
+				<< " error: " << delta2Sum
+				<< " prior: " << priorLogLikelihood
+				<< " likelihood: " << finalLogLikelihood;
+
+		points.push_back({ { t, finalLogLikelihood } });
+		if (points.back().y() < points[bestPoint].y())
+			bestPoint = points.size() - 1;
+
+		if (t == currentMode_->ctHi)
+			break;
+
+		/*
+		 * Ensure even steps along the r/b curve by scaling them by the
+		 * current t.
+		 */
+		t = std::min(t + t / 10 * kSearchStep, currentMode_->ctHi);
+	}
+
+	t = points[bestPoint].x();
+	LOG(Awb, Debug) << "Coarse search found CT " << t;
+
+	/*
+	 * We have the best point of the search, but refine it with a quadratic
+	 * interpolation around its neighbors.
+	 */
+	if (points.size() > 2) {
+		bestPoint = std::clamp(bestPoint, 1ul, points.size() - 2);
+		t = interpolateQuadratic(points[bestPoint - 1],
+					 points[bestPoint],
+					 points[bestPoint + 1]);
+		LOG(Awb, Debug)
+			<< "After quadratic refinement, coarse search has CT "
+			<< t;
+	}
+
+	return t;
+}
+
+void AwbBayes::fineSearch(double &t, double &r, double &b, ipa::Pwl const &prior, const AwbStats &stats) const
+{
+	int spanR = -1;
+	int spanB = -1;
+	double step = t / 10 * kSearchStep * 0.1;
+	int nsteps = 5;
+	ctR_.eval(t, &spanR);
+	ctB_.eval(t, &spanB);
+	double rDiff = ctR_.eval(t + nsteps * step, &spanR) -
+		       ctR_.eval(t - nsteps * step, &spanR);
+	double bDiff = ctB_.eval(t + nsteps * step, &spanB) -
+		       ctB_.eval(t - nsteps * step, &spanB);
+	Pwl::Point transverse({ bDiff, -rDiff });
+	if (transverse.length2() < 1e-6)
+		return;
+	/*
+	 * transverse is a unit vector orthogonal to the b vs. r function
+	 * (pointing outwards with r and b increasing)
+	 */
+	transverse = transverse / transverse.length();
+	double bestLogLikelihood = 0;
+	double bestT = 0;
+	Pwl::Point bestRB;
+	double transverseRange = transverseNeg_ + transversePos_;
+	const int maxNumDeltas = 12;
+
+	/* a transverse step approximately every 0.01 r/b units */
+	int numDeltas = floor(transverseRange * 100 + 0.5) + 1;
+	numDeltas = std::clamp(numDeltas, 3, maxNumDeltas);
+
+	/*
+	 * Step down CT curve. March a bit further if the transverse range is
+	 * large.
+	 */
+	nsteps += numDeltas;
+	for (int i = -nsteps; i <= nsteps; i++) {
+		double tTest = t + i * step;
+		double priorLogLikelihood =
+			prior.eval(prior.domain().clamp(tTest));
+		Pwl::Point rbStart{ { ctR_.eval(tTest, &spanR),
+				      ctB_.eval(tTest, &spanB) } };
+		Pwl::Point samples[maxNumDeltas];
+		int bestPoint = 0;
+
+		/*
+		 * Sample numDeltas points transversely *off* the CT curve
+		 * in the range [-transverseNeg, transversePos].
+		 * The x values of a sample contains the distance and the y
+		 * value contains the corresponding log likelihood.
+		 */
+		double transverseStep = transverseRange / (numDeltas - 1);
+		for (int j = 0; j < numDeltas; j++) {
+			auto &p = samples[j];
+			p.x() = -transverseNeg_ + transverseStep * j;
+			Pwl::Point rbTest = rbStart + transverse * p.x();
+			RGB<double> gains({ 1 / rbTest[0], 1.0, 1 / rbTest[1] });
+			double delta2Sum = stats.computeColourError(gains);
+			p.y() = delta2Sum - priorLogLikelihood;
+
+			if (p.y() < samples[bestPoint].y())
+				bestPoint = j;
+		}
+
+		/*
+		 * We have all samples transversely across the CT curve,
+		 * now let's do a quadratic interpolation for the best result.
+		 */
+		bestPoint = std::clamp(bestPoint, 1, numDeltas - 2);
+		double bestOffset = interpolateQuadratic(samples[bestPoint - 1],
+							 samples[bestPoint],
+							 samples[bestPoint + 1]);
+		Pwl::Point rbTest = rbStart + transverse * bestOffset;
+		RGB<double> gains({ 1 / rbTest[0], 1.0, 1 / rbTest[1] });
+		double delta2Sum = stats.computeColourError(gains);
+		double finalLogLikelihood = delta2Sum - priorLogLikelihood;
+		LOG(Awb, Debug)
+			<< "Fine search t: " << tTest
+			<< " r: " << rbTest[0]
+			<< " b: " << rbTest[1]
+			<< " offset: " << bestOffset
+			<< " likelihood: " << finalLogLikelihood
+			<< (finalLogLikelihood < bestLogLikelihood ? " NEW BEST" : "");
+
+		if (bestT == 0 || finalLogLikelihood < bestLogLikelihood) {
+			bestLogLikelihood = finalLogLikelihood;
+			bestT = tTest;
+			bestRB = rbTest;
+		}
+	}
+
+	t = bestT;
+	r = bestRB[0];
+	b = bestRB[1];
+	LOG(Awb, Debug)
+		<< "Fine search found t " << t << " r " << r << " b " << b;
+}
+
+/**
+ * \brief Find extremum of function
+ * \param[in] a First point
+ * \param[in] b Second point
+ * \param[in] c Third point
+ *
+ * Given 3 points on a curve, find the extremum of the function in that interval
+ * by fitting a quadratic.
+ *
+ * \return The x value of the extremum clamped to the interval [a.x(), c.x()]
+ */
+double AwbBayes::interpolateQuadratic(Pwl::Point const &a, Pwl::Point const &b,
+				      Pwl::Point const &c) const
+{
+	const double eps = 1e-3;
+	Pwl::Point ca = c - a;
+	Pwl::Point ba = b - a;
+	double denominator = 2 * (ba.y() * ca.x() - ca.y() * ba.x());
+	if (std::abs(denominator) > eps) {
+		double numerator = ba.y() * ca.x() * ca.x() - ca.y() * ba.x() * ba.x();
+		double result = numerator / denominator + a.x();
+		return std::max(a.x(), std::min(c.x(), result));
+	}
+	/* has degenerated to straight line segment */
+	return a.y() < c.y() - eps ? a.x() : (c.y() < a.y() - eps ? c.x() : b.x());
+}
+
+} /* namespace ipa */
+
+} /* namespace libcamera */
diff --git a/src/ipa/libipa/awb_bayes.h b/src/ipa/libipa/awb_bayes.h
new file mode 100644
index 000000000000..5284f0ca4cc0
--- /dev/null
+++ b/src/ipa/libipa/awb_bayes.h
@@ -0,0 +1,67 @@ 
+/* SPDX-License-Identifier: LGPL-2.1-or-later */
+/*
+ * Copyright (C) 2024 Ideas on Board Oy
+ *
+ * Base class for bayes AWB algorithms
+ */
+
+#pragma once
+
+#include <map>
+#include <memory>
+#include <tuple>
+#include <vector>
+
+#include <libcamera/base/utils.h>
+
+#include <libcamera/control_ids.h>
+#include <libcamera/controls.h>
+
+#include "libcamera/internal/yaml_parser.h"
+
+#include "awb.h"
+#include "interpolator.h"
+#include "pwl.h"
+#include "vector.h"
+
+namespace libcamera {
+
+namespace ipa {
+
+class AwbBayes : public AwbAlgorithm
+{
+public:
+	AwbBayes() = default;
+
+	int init(const YamlObject &tuningData) override;
+	AwbResult calculateAwb(const AwbStats &stats, int lux) override;
+	RGB<double> gainsFromColourTemperature(double temperatureK) override;
+	void handleControls(const ControlList &controls) override;
+
+private:
+	int readPriors(const YamlObject &tuningData);
+
+	void fineSearch(double &t, double &r, double &b, ipa::Pwl const &prior,
+			const AwbStats &stats) const;
+	double coarseSearch(const ipa::Pwl &prior, const AwbStats &stats) const;
+	double interpolateQuadratic(ipa::Pwl::Point const &a,
+				    ipa::Pwl::Point const &b,
+				    ipa::Pwl::Point const &c) const;
+
+	Interpolator<Pwl> priors_;
+	Interpolator<Vector<double, 2>> colourGainCurve_;
+
+	ipa::Pwl ctR_;
+	ipa::Pwl ctB_;
+	ipa::Pwl ctRInverse_;
+	ipa::Pwl ctBInverse_;
+
+	double transversePos_;
+	double transverseNeg_;
+
+	ModeConfig *currentMode_ = nullptr;
+};
+
+} /* namespace ipa */
+
+} /* namespace libcamera */
diff --git a/src/ipa/libipa/meson.build b/src/ipa/libipa/meson.build
index c550a6eb45b6..b519c8146d7c 100644
--- a/src/ipa/libipa/meson.build
+++ b/src/ipa/libipa/meson.build
@@ -3,6 +3,7 @@ 
 libipa_headers = files([
     'agc_mean_luminance.h',
     'algorithm.h',
+    'awb_bayes.h',
     'awb_grey.h',
     'awb.h',
     'camera_sensor_helper.h',
@@ -22,6 +23,7 @@  libipa_headers = files([
 libipa_sources = files([
     'agc_mean_luminance.cpp',
     'algorithm.cpp',
+    'awb_bayes.cpp',
     'awb_grey.cpp',
     'awb.cpp',
     'camera_sensor_helper.cpp',