Message ID | 20241117221712.29616-12-laurent.pinchart@ideasonboard.com |
---|---|
State | Superseded |
Headers | show |
Series |
|
Related | show |
Quoting Laurent Pinchart (2024-11-17 22:17:12) > Processing of the statistics and estimation of the colour temperature > involve linear algebra. Replace the manual calculations with usage of > the Vector and Matrix classes. > > Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com> > --- > src/ipa/rkisp1/algorithms/awb.cpp | 44 +++++++++++++++++++------------ > 1 file changed, 27 insertions(+), 17 deletions(-) > > diff --git a/src/ipa/rkisp1/algorithms/awb.cpp b/src/ipa/rkisp1/algorithms/awb.cpp > index 1c572055acdd..c089523c8bde 100644 > --- a/src/ipa/rkisp1/algorithms/awb.cpp > +++ b/src/ipa/rkisp1/algorithms/awb.cpp > @@ -169,17 +169,21 @@ void Awb::prepare(IPAContext &context, const uint32_t frame, > > uint32_t Awb::estimateCCT(const RGB<double> &rgb) > { > - /* Convert the RGB values to CIE tristimulus values (XYZ) */ > - double X = -0.14282 * rgb.r() + 1.54924 * rgb.g() - 0.95641 * rgb.b(); > - double Y = -0.32466 * rgb.r() + 1.57837 * rgb.g() - 0.73191 * rgb.b(); > - double Z = -0.68202 * rgb.r() + 0.77073 * rgb.g() + 0.56332 * rgb.b(); > + /* > + * Convert the RGB values to CIE tristimulus values (XYZ) and normalize > + * it (xyz). > + */ > + static const Matrix<double, 3, 3> rgb2xyz({ > + -0.14282, 1.54924, -0.95641, > + -0.32466, 1.57837, -0.73191, > + -0.68202, 0.77073, 0.56332 > + }); > > - /* Calculate the normalized chromaticity values */ > - double x = X / (X + Y + Z); > - double y = Y / (X + Y + Z); > + Vector<double, 3> xyz = rgb2xyz * rgb; > + xyz.normalize(); > > /* Calculate CCT */ > - double n = (x - 0.3320) / (0.1858 - y); > + double n = (xyz.x() - 0.3320) / (0.1858 - xyz.y()); > return 449 * n * n * n + 3525 * n * n + 6823.3 * n + 5520.33; > } > > @@ -215,9 +219,11 @@ void Awb::process(IPAContext &context, > rgbMeans.b() = awb->awb_mean[0].mean_cb_or_b; > } else { > /* Get the YCbCr mean values */ > - double yMean = awb->awb_mean[0].mean_y_or_g; > - double cbMean = awb->awb_mean[0].mean_cb_or_b; > - double crMean = awb->awb_mean[0].mean_cr_or_r; > + Vector<double, 3> yuvMeans({ > + static_cast<double>(awb->awb_mean[0].mean_y_or_g), > + static_cast<double>(awb->awb_mean[0].mean_cb_or_b), > + static_cast<double>(awb->awb_mean[0].mean_cr_or_r) > + }); > > /* > * Convert from YCbCr to RGB. > @@ -231,12 +237,16 @@ void Awb::process(IPAContext &context, > * [1,1636, -0,4045, -0,7949] > * [1,1636, 1,9912, -0,0250]] This table in the comment might now be redundant or duplicated given the new style below. But I think that's exactly the purpose of the series and a good thing > */ > - yMean -= 16; > - cbMean -= 128; > - crMean -= 128; > - rgbMeans.r() = 1.1636 * yMean - 0.0623 * cbMean + 1.6008 * crMean; > - rgbMeans.g() = 1.1636 * yMean - 0.4045 * cbMean - 0.7949 * crMean; > - rgbMeans.b() = 1.1636 * yMean + 1.9912 * cbMean - 0.0250 * crMean; > + static const Matrix<double, 3, 3> yuv2rgbMatrix({ > + 1.1636, -0.0623, 1.6008, > + 1.1636, -0.4045, -0.7949, > + 1.1636, 1.9912, -0.0250 > + }); That's far more recognisable as a 3x3 matrix transform parameter I think So I think this series is a useful development (I'm sure/hope I said that last time I saw something very similar too, but it seems it never got in ?) Reviewed-by: Kieran Bingham <kieran.bingham@ideasonboard.com> I'm also sure we've got patches that move these functions so you might need to check that to see who can solve the race. -- Kieran > + static const Vector<double, 3> yuv2rgbOffset({ > + 16, 128, 128 > + }); > + > + rgbMeans = yuv2rgbMatrix * (yuvMeans - yuv2rgbOffset); > > /* > * Due to hardware rounding errors in the YCbCr means, the > -- > Regards, > > Laurent Pinchart >
On Mon, Nov 18, 2024 at 11:21:45AM +0000, Kieran Bingham wrote: > Quoting Laurent Pinchart (2024-11-17 22:17:12) > > Processing of the statistics and estimation of the colour temperature > > involve linear algebra. Replace the manual calculations with usage of > > the Vector and Matrix classes. > > > > Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com> > > --- > > src/ipa/rkisp1/algorithms/awb.cpp | 44 +++++++++++++++++++------------ > > 1 file changed, 27 insertions(+), 17 deletions(-) > > > > diff --git a/src/ipa/rkisp1/algorithms/awb.cpp b/src/ipa/rkisp1/algorithms/awb.cpp > > index 1c572055acdd..c089523c8bde 100644 > > --- a/src/ipa/rkisp1/algorithms/awb.cpp > > +++ b/src/ipa/rkisp1/algorithms/awb.cpp > > @@ -169,17 +169,21 @@ void Awb::prepare(IPAContext &context, const uint32_t frame, > > > > uint32_t Awb::estimateCCT(const RGB<double> &rgb) > > { > > - /* Convert the RGB values to CIE tristimulus values (XYZ) */ > > - double X = -0.14282 * rgb.r() + 1.54924 * rgb.g() - 0.95641 * rgb.b(); > > - double Y = -0.32466 * rgb.r() + 1.57837 * rgb.g() - 0.73191 * rgb.b(); > > - double Z = -0.68202 * rgb.r() + 0.77073 * rgb.g() + 0.56332 * rgb.b(); > > + /* > > + * Convert the RGB values to CIE tristimulus values (XYZ) and normalize > > + * it (xyz). > > + */ > > + static const Matrix<double, 3, 3> rgb2xyz({ > > + -0.14282, 1.54924, -0.95641, > > + -0.32466, 1.57837, -0.73191, > > + -0.68202, 0.77073, 0.56332 > > + }); > > > > - /* Calculate the normalized chromaticity values */ > > - double x = X / (X + Y + Z); > > - double y = Y / (X + Y + Z); > > + Vector<double, 3> xyz = rgb2xyz * rgb; > > + xyz.normalize(); > > > > /* Calculate CCT */ > > - double n = (x - 0.3320) / (0.1858 - y); > > + double n = (xyz.x() - 0.3320) / (0.1858 - xyz.y()); > > return 449 * n * n * n + 3525 * n * n + 6823.3 * n + 5520.33; > > } > > > > @@ -215,9 +219,11 @@ void Awb::process(IPAContext &context, > > rgbMeans.b() = awb->awb_mean[0].mean_cb_or_b; > > } else { > > /* Get the YCbCr mean values */ > > - double yMean = awb->awb_mean[0].mean_y_or_g; > > - double cbMean = awb->awb_mean[0].mean_cb_or_b; > > - double crMean = awb->awb_mean[0].mean_cr_or_r; > > + Vector<double, 3> yuvMeans({ > > + static_cast<double>(awb->awb_mean[0].mean_y_or_g), > > + static_cast<double>(awb->awb_mean[0].mean_cb_or_b), > > + static_cast<double>(awb->awb_mean[0].mean_cr_or_r) > > + }); > > > > /* > > * Convert from YCbCr to RGB. > > @@ -231,12 +237,16 @@ void Awb::process(IPAContext &context, > > * [1,1636, -0,4045, -0,7949] > > * [1,1636, 1,9912, -0,0250]] > > This table in the comment might now be redundant or duplicated given the > new style below. I think the matrix should be moved to the newly colour.h that Dan is introducing, I expect the comment to be removed then. > But I think that's exactly the purpose of the series and a good thing > > > */ > > - yMean -= 16; > > - cbMean -= 128; > > - crMean -= 128; > > - rgbMeans.r() = 1.1636 * yMean - 0.0623 * cbMean + 1.6008 * crMean; > > - rgbMeans.g() = 1.1636 * yMean - 0.4045 * cbMean - 0.7949 * crMean; > > - rgbMeans.b() = 1.1636 * yMean + 1.9912 * cbMean - 0.0250 * crMean; > > + static const Matrix<double, 3, 3> yuv2rgbMatrix({ > > + 1.1636, -0.0623, 1.6008, > > + 1.1636, -0.4045, -0.7949, > > + 1.1636, 1.9912, -0.0250 > > + }); > > That's far more recognisable as a 3x3 matrix transform parameter I think > > So I think this series is a useful development (I'm sure/hope I said > that last time I saw something very similar too, but it seems it never > got in ?) > > Reviewed-by: Kieran Bingham <kieran.bingham@ideasonboard.com> > > > I'm also sure we've got patches that move these functions so you might > need to check that to see who can solve the race. Yes, I'm aware of that. If Dan pushes his series first I'll rebase this, no problem. > > + static const Vector<double, 3> yuv2rgbOffset({ > > + 16, 128, 128 > > + }); > > + > > + rgbMeans = yuv2rgbMatrix * (yuvMeans - yuv2rgbOffset); > > > > /* > > * Due to hardware rounding errors in the YCbCr means, the
diff --git a/src/ipa/rkisp1/algorithms/awb.cpp b/src/ipa/rkisp1/algorithms/awb.cpp index 1c572055acdd..c089523c8bde 100644 --- a/src/ipa/rkisp1/algorithms/awb.cpp +++ b/src/ipa/rkisp1/algorithms/awb.cpp @@ -169,17 +169,21 @@ void Awb::prepare(IPAContext &context, const uint32_t frame, uint32_t Awb::estimateCCT(const RGB<double> &rgb) { - /* Convert the RGB values to CIE tristimulus values (XYZ) */ - double X = -0.14282 * rgb.r() + 1.54924 * rgb.g() - 0.95641 * rgb.b(); - double Y = -0.32466 * rgb.r() + 1.57837 * rgb.g() - 0.73191 * rgb.b(); - double Z = -0.68202 * rgb.r() + 0.77073 * rgb.g() + 0.56332 * rgb.b(); + /* + * Convert the RGB values to CIE tristimulus values (XYZ) and normalize + * it (xyz). + */ + static const Matrix<double, 3, 3> rgb2xyz({ + -0.14282, 1.54924, -0.95641, + -0.32466, 1.57837, -0.73191, + -0.68202, 0.77073, 0.56332 + }); - /* Calculate the normalized chromaticity values */ - double x = X / (X + Y + Z); - double y = Y / (X + Y + Z); + Vector<double, 3> xyz = rgb2xyz * rgb; + xyz.normalize(); /* Calculate CCT */ - double n = (x - 0.3320) / (0.1858 - y); + double n = (xyz.x() - 0.3320) / (0.1858 - xyz.y()); return 449 * n * n * n + 3525 * n * n + 6823.3 * n + 5520.33; } @@ -215,9 +219,11 @@ void Awb::process(IPAContext &context, rgbMeans.b() = awb->awb_mean[0].mean_cb_or_b; } else { /* Get the YCbCr mean values */ - double yMean = awb->awb_mean[0].mean_y_or_g; - double cbMean = awb->awb_mean[0].mean_cb_or_b; - double crMean = awb->awb_mean[0].mean_cr_or_r; + Vector<double, 3> yuvMeans({ + static_cast<double>(awb->awb_mean[0].mean_y_or_g), + static_cast<double>(awb->awb_mean[0].mean_cb_or_b), + static_cast<double>(awb->awb_mean[0].mean_cr_or_r) + }); /* * Convert from YCbCr to RGB. @@ -231,12 +237,16 @@ void Awb::process(IPAContext &context, * [1,1636, -0,4045, -0,7949] * [1,1636, 1,9912, -0,0250]] */ - yMean -= 16; - cbMean -= 128; - crMean -= 128; - rgbMeans.r() = 1.1636 * yMean - 0.0623 * cbMean + 1.6008 * crMean; - rgbMeans.g() = 1.1636 * yMean - 0.4045 * cbMean - 0.7949 * crMean; - rgbMeans.b() = 1.1636 * yMean + 1.9912 * cbMean - 0.0250 * crMean; + static const Matrix<double, 3, 3> yuv2rgbMatrix({ + 1.1636, -0.0623, 1.6008, + 1.1636, -0.4045, -0.7949, + 1.1636, 1.9912, -0.0250 + }); + static const Vector<double, 3> yuv2rgbOffset({ + 16, 128, 128 + }); + + rgbMeans = yuv2rgbMatrix * (yuvMeans - yuv2rgbOffset); /* * Due to hardware rounding errors in the YCbCr means, the
Processing of the statistics and estimation of the colour temperature involve linear algebra. Replace the manual calculations with usage of the Vector and Matrix classes. Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com> --- src/ipa/rkisp1/algorithms/awb.cpp | 44 +++++++++++++++++++------------ 1 file changed, 27 insertions(+), 17 deletions(-)