Message ID | 20240611132430.404814-4-paul.elder@ideasonboard.com |
---|---|
State | Superseded |
Headers | show |
Series |
|
Related | show |
Hi Paul, Thank you for the patch. On Tue, Jun 11, 2024 at 10:24:29PM +0900, Paul Elder wrote: > Clean up the Pwl class copied from the Raspberry Pi IPA to align it more > with the libcamera style. > > Signed-off-by: Paul Elder <paul.elder@ideasonboard.com> > Reviewed-by: Stefan Klug <stefan.klug@ideasonboard.com> > Acked-by: David Plowman <david.plowman@raspberrypi.com> > Reviewed-by: Kieran Bingham <kieran.bingham@ideasonboard.com> > > --- > Changes in v8: > - use the updated Vector interface > - remove unused functions (prepend, invert, extendDomain) > - improve class documentation > - checkstyle > - s/PointF/Point/ > - make inverse() return pair instead of output parameter > - fix const order > - fix includes > > No change in v7 > > Changes in v6: > - move adding pwl to meson here > > Changes in v5: > - fix documentation order > - fix some typos > - add the Vector-based PointF > > Changes in v4: > - update to apply to new copy of pwl > - add documentation > - fix doxygen > > No change in v3 > > Changes in v2: > - s/FPoint/PointF/g > - improve documentation > - s/matchDomain/extendDomain/ > --- > src/ipa/libipa/meson.build | 2 + > src/ipa/libipa/pwl.cpp | 372 ++++++++++++++++++++++++++----------- > src/ipa/libipa/pwl.h | 133 +++++-------- > 3 files changed, 311 insertions(+), 196 deletions(-) > > diff --git a/src/ipa/libipa/meson.build b/src/ipa/libipa/meson.build > index 8b0c8fff901b..3669f8939d3b 100644 > --- a/src/ipa/libipa/meson.build > +++ b/src/ipa/libipa/meson.build > @@ -8,6 +8,7 @@ libipa_headers = files([ > 'fc_queue.h', > 'histogram.h', > 'module.h', > + 'pwl.h', > 'vector.h', > ]) > > @@ -19,6 +20,7 @@ libipa_sources = files([ > 'fc_queue.cpp', > 'histogram.cpp', > 'module.cpp', > + 'pwl.cpp', > 'vector.cpp', > ]) > > diff --git a/src/ipa/libipa/pwl.cpp b/src/ipa/libipa/pwl.cpp > index e39123767aa6..4dc59981708d 100644 > --- a/src/ipa/libipa/pwl.cpp > +++ b/src/ipa/libipa/pwl.cpp > @@ -1,19 +1,120 @@ > /* SPDX-License-Identifier: BSD-2-Clause */ > /* > * Copyright (C) 2019, Raspberry Pi Ltd > + * Copyright (C) 2024, Ideas on Board Oy > * > - * piecewise linear functions > + * Piecewise linear functions > */ > > -#include <cassert> > +#include "pwl.h" > + > +#include <assert.h> > #include <cmath> > +#include <sstream> > #include <stdexcept> > > -#include "pwl.h" > +#include <libcamera/geometry.h> Unless I'm missing something, this isn't needed. > + > +/** > + * \file pwl.h > + * \brief Piecewise linear functions > + */ > + > +namespace libcamera { > + > +namespace ipa { > + > +/** > + * \class Pwl > + * \brief Describe a univariate piecewise linear function in two-dimensional > + * real space > + * > + * A piecewise linear function is a univariate function that maps reals to > + * reals, and it is composed of multiple straight-line segments. > + * > + * While a mathematical piecewise linear function would usually be defined by > + * a list of linear functions and for which values of the domain they apply, > + * this Pwl class is instead defined by a list of points at which these line > + * segments intersect. These intersecting points are known as knots. > + * > + * https://en.wikipedia.org/wiki/Piecewise_linear_function > + * > + * A consequence of the Pwl class being defined by knots instead of linear > + * functions is that the values of the piecewise linear function past the ends > + * of the function are constants as opposed to linear functions. In a > + * mathematical piecewise linear function that is defined by multiple linear > + * functions, the ends of the function are also linear functions and hence grow > + * to infinity (or negative infinity). However, since this Pwl class is defined > + * by knots, the y-value of the leftmost and rightmost knots will hold for all > + * x values to negative infinity and positive infinity, respectively. Nice documentation, I especially like the part about what happens outside of the defined segments, that was not evident. > + */ > + > +/** > + * \typedef Pwl::Point > + * \brief Describe a point in two-dimensional real space > + */ > + > +/** > + * \class Pwl::Interval > + * \brief Describe an interval in one-dimensional real space > + */ > + > +/** > + * \fn Pwl::Interval::Interval(double _start, double _end) > + * \brief Construct an interval > + * \param _start Start of the interval > + * \param _end End of the interval > + */ > + > +/** > + * \fn Pwl::Interval::contains > + * \brief Check if a given value falls within the interval > + * \param value Value to check * \return True if the value falls within the interval, including its * bounds, or false otherwise > + */ > + > +/** > + * \fn Pwl::Interval::clamp > + * \brief Clamp a value such that it is within the interval > + * \param value Value to clamp * \return The clamped value > + */ > + > +/** > + * \fn Pwl::Interval::length > + * \brief Compute the length of the interval * \return The length of the interval > + */ > + > +/** > + * \var Pwl::Interval::start > + * \brief Start of the interval > + */ > > -using namespace RPiController; > +/** > + * \var Pwl::Interval::end > + * \brief End of the interval > + */ > > -int Pwl::read(const libcamera::YamlObject ¶ms) > +/** > + * \fn Pwl::Pwl(std::vector<Point> const &points) > + * \brief Construct a piecewise linear function from a list of 2D points > + * \param points Vector of points from which to construct the piecewise linear function > + * > + * \a points must be in ascending order of x-value. > + */ > + > +/** > + * \brief Populate the piecewise linear function from yaml data > + * \param params Yaml data to populate the piecewise linear function with > + * > + * Any existing points in the piecewise linear function will *not* be > + * overwritten. It sounds like a bit of an off behaviour, compared to clearing the PWL first. Does anything depends on it ? > + * > + * The yaml data is expected to be a list with an even number of numerical > + * elements. These will be parsed in pairs into x and y points in the piecewise > + * linear function, and added in order. x must be monotonically increasing. > + * > + * \return 0 on success, negative error code otherwise > + */ > +int Pwl::readYaml(const libcamera::YamlObject ¶ms) > { > if (!params.size() || params.size() % 2) > return -EINVAL; > @@ -24,64 +125,109 @@ int Pwl::read(const libcamera::YamlObject ¶ms) > auto x = it->get<double>(); > if (!x) > return -EINVAL; > - if (it != list.begin() && *x <= points_.back().x) > + if (it != list.begin() && *x <= points_.back().x()) > return -EINVAL; > > auto y = (++it)->get<double>(); > if (!y) > return -EINVAL; > > - points_.push_back(Point(*x, *y)); > + points_.push_back(Point({ *x, *y })); > } > > return 0; > } > > +/** > + * \brief Append a point to the end of the piecewise linear function > + * \param x x-coordinate of the point to add to the piecewise linear function > + * \param y y-coordinate of the point to add to the piecewise linear function > + * \param eps Epsilon for the minimum x distance between points (optional) > + * > + * The point's x-coordinate must be greater than the x-coordinate of the last > + * (= greatest) point already in the piecewise linear function. > + */ > void Pwl::append(double x, double y, const double eps) > { > - if (points_.empty() || points_.back().x + eps < x) > - points_.push_back(Point(x, y)); > + if (points_.empty() || points_.back().x() + eps < x) > + points_.push_back(Point({ x, y })); > } > > +/** > + * \brief Prepend a point to the beginning of the piecewise linear function > + * \param x x-coordinate of the point to add to the piecewise linear function > + * \param y y-coordinate of the point to add to the piecewise linear function > + * \param eps Epsilon for the minimum x distance between points (optional) > + * > + * The point's x-coordinate must be less than the x-coordinate of the first > + * (= smallest) point already in the piecewise linear function. > + */ > void Pwl::prepend(double x, double y, const double eps) > { > - if (points_.empty() || points_.front().x - eps > x) > - points_.insert(points_.begin(), Point(x, y)); > + if (points_.empty() || points_.front().x() - eps > x) > + points_.insert(points_.begin(), Point({ x, y })); > } > > +/** > + * \brief Get the domain of the piecewise linear function > + * \return An interval representing the domain > + */ > Pwl::Interval Pwl::domain() const > { > - return Interval(points_[0].x, points_[points_.size() - 1].x); > + return Interval(points_[0].x(), points_[points_.size() - 1].x()); > } > > +/** > + * \brief Get the range of the piecewise linear function > + * \return An interval representing the range > + */ > Pwl::Interval Pwl::range() const > { > - double lo = points_[0].y, hi = lo; > + double lo = points_[0].y(), hi = lo; > for (auto &p : points_) > - lo = std::min(lo, p.y), hi = std::max(hi, p.y); > + lo = std::min(lo, p.y()), hi = std::max(hi, p.y()); > return Interval(lo, hi); > } > > +/** > + * \brief Check if the piecewise linear function is empty > + * \return True if there are no points in the function, false otherwise > + */ > bool Pwl::empty() const > { > return points_.empty(); > } > > -double Pwl::eval(double x, int *spanPtr, bool updateSpan) const > +/** > + * \brief Evaluate the piecewise linear function > + * \param[in] x The x value to input into the function > + * \param[inout] span Initial guess for span > + * \param[in] updateSpan Set to true to update span > + * > + * Evaluate Pwl, optionally supplying an initial guess for the > + * "span". The "span" may be optionally be updated. If you want to know > + * the "span" value but don't have an initial guess you can set it to > + * -1. > + * > + * \return The result of evaluating the piecewise linear function at position \a x > + */ > +double Pwl::eval(double x, int *span, bool updateSpan) const > { > - int span = findSpan(x, spanPtr && *spanPtr != -1 ? *spanPtr : points_.size() / 2 - 1); > - if (spanPtr && updateSpan) > - *spanPtr = span; > - return points_[span].y + > - (x - points_[span].x) * (points_[span + 1].y - points_[span].y) / > - (points_[span + 1].x - points_[span].x); > + int index = findSpan(x, span && *span != -1 > + ? *span > + : points_.size() / 2 - 1); > + if (span && updateSpan) > + *span = index; > + return points_[index].y() + > + (x - points_[index].x()) * (points_[index + 1].y() - points_[index].y()) / > + (points_[index + 1].x() - points_[index].x()); > } > > int Pwl::findSpan(double x, int span) const > { > /* > * Pwls are generally small, so linear search may well be faster than > - * binary, though could review this if large PWls start turning up. > + * binary, though could review this if large Pwls start turning up. > */ > int lastSpan = points_.size() - 2; > /* > @@ -89,65 +235,43 @@ int Pwl::findSpan(double x, int span) const > * control point > */ > span = std::max(0, std::min(lastSpan, span)); > - while (span < lastSpan && x >= points_[span + 1].x) > + while (span < lastSpan && x >= points_[span + 1].x()) > span++; > - while (span && x < points_[span].x) > + while (span && x < points_[span].x()) > span--; > return span; > } > > -Pwl::PerpType Pwl::invert(Point const &xy, Point &perp, int &span, > - const double eps) const > -{ > - assert(span >= -1); > - bool prevOffEnd = false; > - for (span = span + 1; span < (int)points_.size() - 1; span++) { > - Point spanVec = points_[span + 1] - points_[span]; > - double t = ((xy - points_[span]) % spanVec) / spanVec.len2(); > - if (t < -eps) /* off the start of this span */ > - { > - if (span == 0) { > - perp = points_[span]; > - return PerpType::Start; > - } else if (prevOffEnd) { > - perp = points_[span]; > - return PerpType::Vertex; > - } > - } else if (t > 1 + eps) /* off the end of this span */ > - { > - if (span == (int)points_.size() - 2) { > - perp = points_[span + 1]; > - return PerpType::End; > - } > - prevOffEnd = true; > - } else /* a true perpendicular */ > - { > - perp = points_[span] + spanVec * t; > - return PerpType::Perpendicular; > - } > - } > - return PerpType::None; > -} > - > -Pwl Pwl::inverse(bool *trueInverse, const double eps) const > +/** > + * \brief Compute the inverse function > + * \param[in] eps Epsilon for the minimum x distance between points (optional) > + * > + * The output includes whether the resulting inverse function is a proper > + * (true) inverse, or only a best effort (e.g. input was non-monotonic). > + * > + * \return A pair of the inverse piecewise linear function, and whether or not > + * the result is a proper/true inverse > + */ > +std::pair<Pwl, bool> Pwl::inverse(const double eps) const > { > bool appended = false, prepended = false, neither = false; > Pwl inverse; > > for (Point const &p : points_) { > - if (inverse.empty()) > - inverse.append(p.y, p.x, eps); > - else if (std::abs(inverse.points_.back().x - p.y) <= eps || > - std::abs(inverse.points_.front().x - p.y) <= eps) > + if (inverse.empty()) { > + inverse.append(p.y(), p.x(), eps); > + } else if (std::abs(inverse.points_.back().x() - p.y()) <= eps || > + std::abs(inverse.points_.front().x() - p.y()) <= eps) { > /* do nothing */; > - else if (p.y > inverse.points_.back().x) { > - inverse.append(p.y, p.x, eps); > + } else if (p.y() > inverse.points_.back().x()) { > + inverse.append(p.y(), p.x(), eps); > appended = true; > - } else if (p.y < inverse.points_.front().x) { > - inverse.prepend(p.y, p.x, eps); > + } else if (p.y() < inverse.points_.front().x()) { > + inverse.prepend(p.y(), p.x(), eps); > prepended = true; > - } else > + } else { > neither = true; > + } > } > > /* > @@ -155,50 +279,58 @@ Pwl Pwl::inverse(bool *trueInverse, const double eps) const > * onto both ends of the inverse, or if there were points that couldn't > * go on either. > */ > - if (trueInverse) > - *trueInverse = !(neither || (appended && prepended)); > + bool trueInverse = !(neither || (appended && prepended)); > > - return inverse; > + return { inverse, trueInverse }; > } > > +/** > + * \brief Compose two piecewise linear functions together > + * \param[in] other The "other" piecewise linear function > + * \param[in] eps Epsilon for the minimum x distance between points (optional) > + * > + * The "this" function is done first, and "other" after. > + * > + * \return The composed piecewise linear function > + */ > Pwl Pwl::compose(Pwl const &other, const double eps) const > { > - double thisX = points_[0].x, thisY = points_[0].y; > + double thisX = points_[0].x(), thisY = points_[0].y(); > int thisSpan = 0, otherSpan = other.findSpan(thisY, 0); > - Pwl result({ { thisX, other.eval(thisY, &otherSpan, false) } }); > + Pwl result({ Point({ thisX, other.eval(thisY, &otherSpan, false) }) }); > + > while (thisSpan != (int)points_.size() - 1) { > - double dx = points_[thisSpan + 1].x - points_[thisSpan].x, > - dy = points_[thisSpan + 1].y - points_[thisSpan].y; > + double dx = points_[thisSpan + 1].x() - points_[thisSpan].x(), > + dy = points_[thisSpan + 1].y() - points_[thisSpan].y(); > if (std::abs(dy) > eps && > otherSpan + 1 < (int)other.points_.size() && > - points_[thisSpan + 1].y >= > - other.points_[otherSpan + 1].x + eps) { > + points_[thisSpan + 1].y() >= other.points_[otherSpan + 1].x() + eps) { > /* > * next control point in result will be where this > * function's y reaches the next span in other > */ > - thisX = points_[thisSpan].x + > - (other.points_[otherSpan + 1].x - > - points_[thisSpan].y) * > + thisX = points_[thisSpan].x() + > + (other.points_[otherSpan + 1].x() - > + points_[thisSpan].y()) * > dx / dy; > - thisY = other.points_[++otherSpan].x; > + thisY = other.points_[++otherSpan].x(); > } else if (std::abs(dy) > eps && otherSpan > 0 && > - points_[thisSpan + 1].y <= > - other.points_[otherSpan - 1].x - eps) { > + points_[thisSpan + 1].y() <= > + other.points_[otherSpan - 1].x() - eps) { > /* > * next control point in result will be where this > * function's y reaches the previous span in other > */ > - thisX = points_[thisSpan].x + > - (other.points_[otherSpan + 1].x - > - points_[thisSpan].y) * > + thisX = points_[thisSpan].x() + > + (other.points_[otherSpan + 1].x() - > + points_[thisSpan].y()) * > dx / dy; > - thisY = other.points_[--otherSpan].x; > + thisY = other.points_[--otherSpan].x(); > } else { > /* we stay in the same span in other */ > thisSpan++; > - thisX = points_[thisSpan].x, > - thisY = points_[thisSpan].y; > + thisX = points_[thisSpan].x(), > + thisY = points_[thisSpan].y(); > } > result.append(thisX, other.eval(thisY, &otherSpan, false), > eps); > @@ -206,32 +338,47 @@ Pwl Pwl::compose(Pwl const &other, const double eps) const > return result; > } > > +/** > + * \brief Apply function to (x,y) values at every control point > + * \param f Function to be applied > + */ > void Pwl::map(std::function<void(double x, double y)> f) const > { > for (auto &pt : points_) > - f(pt.x, pt.y); > + f(pt.x(), pt.y()); > } > > +/** > + * \brief Apply function to (x, y0, y1) values wherever either Pwl has a > + * control point. Missing \param > + */ > void Pwl::map2(Pwl const &pwl0, Pwl const &pwl1, > std::function<void(double x, double y0, double y1)> f) > { > int span0 = 0, span1 = 0; > - double x = std::min(pwl0.points_[0].x, pwl1.points_[0].x); > + double x = std::min(pwl0.points_[0].x(), pwl1.points_[0].x()); > f(x, pwl0.eval(x, &span0, false), pwl1.eval(x, &span1, false)); > + > while (span0 < (int)pwl0.points_.size() - 1 || > span1 < (int)pwl1.points_.size() - 1) { > if (span0 == (int)pwl0.points_.size() - 1) > - x = pwl1.points_[++span1].x; > + x = pwl1.points_[++span1].x(); > else if (span1 == (int)pwl1.points_.size() - 1) > - x = pwl0.points_[++span0].x; > - else if (pwl0.points_[span0 + 1].x > pwl1.points_[span1 + 1].x) > - x = pwl1.points_[++span1].x; > + x = pwl0.points_[++span0].x(); > + else if (pwl0.points_[span0 + 1].x() > pwl1.points_[span1 + 1].x()) > + x = pwl1.points_[++span1].x(); > else > - x = pwl0.points_[++span0].x; > + x = pwl0.points_[++span0].x(); > f(x, pwl0.eval(x, &span0, false), pwl1.eval(x, &span1, false)); > } > } > > +/** > + * \brief Combine two Pwls Missing \param > + * > + * Create a new Pwl where the y values are given by running f wherever either > + * has a knot. Missing \return > + */ > Pwl Pwl::combine(Pwl const &pwl0, Pwl const &pwl1, > std::function<double(double x, double y0, double y1)> f, > const double eps) > @@ -243,27 +390,32 @@ Pwl Pwl::combine(Pwl const &pwl0, Pwl const &pwl1, > return result; > } > > -void Pwl::matchDomain(Interval const &domain, bool clip, const double eps) > -{ > - int span = 0; > - prepend(domain.start, eval(clip ? points_[0].x : domain.start, &span), > - eps); > - span = points_.size() - 2; > - append(domain.end, eval(clip ? points_.back().x : domain.end, &span), > - eps); > -} > - > +/** > + * \brief Multiply the piecewise linear function > + * \param d Scalar multiplier to multiply the function by > + * \return This function, after it has been multiplied by \a d > + */ > Pwl &Pwl::operator*=(double d) > { > for (auto &pt : points_) > - pt.y *= d; > + pt[1] *= d; If you add non-const x() and y() accessors to the Vector class that return a reference, you could use pt.y() *= d; Up to you. > return *this; > } > > -void Pwl::debug(FILE *fp) const > +/** > + * \brief Assemble and return a string describing the piecewise linear function > + * \return A string describing the piecewise linear function > + */ > +std::string Pwl::toString() const > { > - fprintf(fp, "Pwl {\n"); > + std::stringstream ss; > + ss << "Pwl { "; > for (auto &p : points_) > - fprintf(fp, "\t(%g, %g)\n", p.x, p.y); > - fprintf(fp, "}\n"); > + ss << "(" << p.x() << ", " << p.y() << ") "; > + ss << "}"; > + return ss.str(); > } > + > +} /* namespace ipa */ > + > +} /* namespace libcamera */ > diff --git a/src/ipa/libipa/pwl.h b/src/ipa/libipa/pwl.h > index 7d5e7e4d3fda..a2cbad6c1597 100644 > --- a/src/ipa/libipa/pwl.h > +++ b/src/ipa/libipa/pwl.h > @@ -2,126 +2,87 @@ > /* > * Copyright (C) 2019, Raspberry Pi Ltd > * > - * piecewise linear functions interface > + * Piecewise linear functions interface > */ > #pragma once > > +#include <algorithm> > +#include <cmath> > #include <functional> > -#include <math.h> > +#include <string> > +#include <utility> > #include <vector> > > +#include <libcamera/geometry.h> Unless I'm missing something, this isn't needed. > + > #include "libcamera/internal/yaml_parser.h" > > -namespace RPiController { > +#include "vector.h" > + > +namespace libcamera { > + > +namespace ipa { > > class Pwl > { > public: > + using Point = Vector<double, 2>; > + > struct Interval { > Interval(double _start, double _end) > - : start(_start), end(_end) > - { > - } > - double start, end; > + : start(_start), end(_end) {} > + > bool contains(double value) > { > return value >= start && value <= end; > } > - double clip(double value) > - { > - return value < start ? start > - : (value > end ? end : value); > - } > - double len() const { return end - start; } > - }; > - struct Point { > - Point() : x(0), y(0) {} > - Point(double _x, double _y) > - : x(_x), y(_y) {} > - double x, y; > - Point operator-(Point const &p) const > - { > - return Point(x - p.x, y - p.y); > - } > - Point operator+(Point const &p) const > - { > - return Point(x + p.x, y + p.y); > - } > - double operator%(Point const &p) const > + > + double clamp(double value) > { > - return x * p.x + y * p.y; > + return std::clamp(value, start, end); > } > - Point operator*(double f) const { return Point(x * f, y * f); } > - Point operator/(double f) const { return Point(x / f, y / f); } > - double len2() const { return x * x + y * y; } > - double len() const { return sqrt(len2()); } > + > + double length() const { return end - start; } > + > + double start, end; > }; > + > Pwl() {} Pwl() = default; > - Pwl(std::vector<Point> const &points) : points_(points) {} > - int read(const libcamera::YamlObject ¶ms); > + Pwl(const std::vector<Point> &points) > + : points_(points) {} Pwl(const std::vector<Point> &points) : points_(points) { } but I think it would be better to not make the constructor inline. You can move the implementation to the .cpp file. Same for the default constructor. > + int readYaml(const libcamera::YamlObject ¶ms); > + > void append(double x, double y, const double eps = 1e-6); Is there a reason to qualify eps with const but not x and y ? I would qualify them all, or none (likely none). Same for other functions using eps, I think you can drop the const qualifier. > - void prepend(double x, double y, const double eps = 1e-6); > + > + bool empty() const; > Interval domain() const; > Interval range() const; > - bool empty() const; > - /* > - * Evaluate Pwl, optionally supplying an initial guess for the > - * "span". The "span" may be optionally be updated. If you want to know > - * the "span" value but don't have an initial guess you can set it to > - * -1. > - */ > - double eval(double x, int *spanPtr = nullptr, > + > + double eval(double x, int *span = nullptr, > bool updateSpan = true) const; > - /* > - * Find perpendicular closest to xy, starting from span+1 so you can > - * call it repeatedly to check for multiple closest points (set span to > - * -1 on the first call). Also returns "pseudo" perpendiculars; see > - * PerpType enum. > - */ > - enum class PerpType { > - None, /* no perpendicular found */ > - Start, /* start of Pwl is closest point */ > - End, /* end of Pwl is closest point */ > - Vertex, /* vertex of Pwl is closest point */ > - Perpendicular /* true perpendicular found */ > - }; > - PerpType invert(Point const &xy, Point &perp, int &span, > - const double eps = 1e-6) const; > - /* > - * Compute the inverse function. Indicate if it is a proper (true) > - * inverse, or only a best effort (e.g. input was non-monotonic). > - */ > - Pwl inverse(bool *trueInverse = nullptr, const double eps = 1e-6) const; > - /* Compose two Pwls together, doing "this" first and "other" after. */ > - Pwl compose(Pwl const &other, const double eps = 1e-6) const; > - /* Apply function to (x,y) values at every control point. */ > + > + std::pair<Pwl, bool> inverse(const double eps = 1e-6) const; > + Pwl compose(const Pwl &other, const double eps = 1e-6) const; > + > void map(std::function<void(double x, double y)> f) const; > - /* > - * Apply function to (x, y0, y1) values wherever either Pwl has a > - * control point. > - */ > - static void map2(Pwl const &pwl0, Pwl const &pwl1, > - std::function<void(double x, double y0, double y1)> f); > - /* > - * Combine two Pwls, meaning we create a new Pwl where the y values are > - * given by running f wherever either has a knot. > - */ > + > static Pwl > - combine(Pwl const &pwl0, Pwl const &pwl1, > + combine(const Pwl &pwl0, const Pwl &pwl1, > std::function<double(double x, double y0, double y1)> f, > const double eps = 1e-6); > - /* > - * Make "this" match (at least) the given domain. Any extension my be > - * clipped or linear. > - */ > - void matchDomain(Interval const &domain, bool clip = true, > - const double eps = 1e-6); > + > Pwl &operator*=(double d); > - void debug(FILE *fp = stdout) const; > + > + std::string toString() const; > > private: > + void prepend(double x, double y, const double eps = 1e-6); > + static void map2(const Pwl &pwl0, const Pwl &pwl1, > + std::function<void(double x, double y0, double y1)> f); We usually put the static functions first or last, but not in the middle. > int findSpan(double x, int span) const; And a blank line here to separate functions from variables. Reviewed-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com> > std::vector<Point> points_; > }; > > -} /* namespace RPiController */ > +} /* namespace ipa */ > + > +} /* namespace libcamera */
On Wed, Jun 12, 2024 at 01:14:41AM +0300, Laurent Pinchart wrote: > Hi Paul, > > Thank you for the patch. > > On Tue, Jun 11, 2024 at 10:24:29PM +0900, Paul Elder wrote: > > Clean up the Pwl class copied from the Raspberry Pi IPA to align it more > > with the libcamera style. > > > > Signed-off-by: Paul Elder <paul.elder@ideasonboard.com> > > Reviewed-by: Stefan Klug <stefan.klug@ideasonboard.com> > > Acked-by: David Plowman <david.plowman@raspberrypi.com> > > Reviewed-by: Kieran Bingham <kieran.bingham@ideasonboard.com> > > > > --- > > Changes in v8: > > - use the updated Vector interface > > - remove unused functions (prepend, invert, extendDomain) > > - improve class documentation > > - checkstyle > > - s/PointF/Point/ > > - make inverse() return pair instead of output parameter > > - fix const order > > - fix includes > > > > No change in v7 > > > > Changes in v6: > > - move adding pwl to meson here > > > > Changes in v5: > > - fix documentation order > > - fix some typos > > - add the Vector-based PointF > > > > Changes in v4: > > - update to apply to new copy of pwl > > - add documentation > > - fix doxygen > > > > No change in v3 > > > > Changes in v2: > > - s/FPoint/PointF/g > > - improve documentation > > - s/matchDomain/extendDomain/ > > --- > > src/ipa/libipa/meson.build | 2 + > > src/ipa/libipa/pwl.cpp | 372 ++++++++++++++++++++++++++----------- > > src/ipa/libipa/pwl.h | 133 +++++-------- > > 3 files changed, 311 insertions(+), 196 deletions(-) > > > > diff --git a/src/ipa/libipa/meson.build b/src/ipa/libipa/meson.build > > index 8b0c8fff901b..3669f8939d3b 100644 > > --- a/src/ipa/libipa/meson.build > > +++ b/src/ipa/libipa/meson.build > > @@ -8,6 +8,7 @@ libipa_headers = files([ > > 'fc_queue.h', > > 'histogram.h', > > 'module.h', > > + 'pwl.h', > > 'vector.h', > > ]) > > > > @@ -19,6 +20,7 @@ libipa_sources = files([ > > 'fc_queue.cpp', > > 'histogram.cpp', > > 'module.cpp', > > + 'pwl.cpp', > > 'vector.cpp', > > ]) > > > > diff --git a/src/ipa/libipa/pwl.cpp b/src/ipa/libipa/pwl.cpp > > index e39123767aa6..4dc59981708d 100644 > > --- a/src/ipa/libipa/pwl.cpp > > +++ b/src/ipa/libipa/pwl.cpp > > @@ -1,19 +1,120 @@ > > /* SPDX-License-Identifier: BSD-2-Clause */ > > /* > > * Copyright (C) 2019, Raspberry Pi Ltd > > + * Copyright (C) 2024, Ideas on Board Oy > > * > > - * piecewise linear functions > > + * Piecewise linear functions > > */ > > > > -#include <cassert> > > +#include "pwl.h" > > + > > +#include <assert.h> > > #include <cmath> > > +#include <sstream> > > #include <stdexcept> > > > > -#include "pwl.h" > > +#include <libcamera/geometry.h> > > Unless I'm missing something, this isn't needed. > > > + > > +/** > > + * \file pwl.h > > + * \brief Piecewise linear functions > > + */ > > + > > +namespace libcamera { > > + > > +namespace ipa { > > + > > +/** > > + * \class Pwl > > + * \brief Describe a univariate piecewise linear function in two-dimensional > > + * real space > > + * > > + * A piecewise linear function is a univariate function that maps reals to > > + * reals, and it is composed of multiple straight-line segments. > > + * > > + * While a mathematical piecewise linear function would usually be defined by > > + * a list of linear functions and for which values of the domain they apply, > > + * this Pwl class is instead defined by a list of points at which these line > > + * segments intersect. These intersecting points are known as knots. > > + * > > + * https://en.wikipedia.org/wiki/Piecewise_linear_function > > + * > > + * A consequence of the Pwl class being defined by knots instead of linear > > + * functions is that the values of the piecewise linear function past the ends > > + * of the function are constants as opposed to linear functions. In a > > + * mathematical piecewise linear function that is defined by multiple linear > > + * functions, the ends of the function are also linear functions and hence grow > > + * to infinity (or negative infinity). However, since this Pwl class is defined > > + * by knots, the y-value of the leftmost and rightmost knots will hold for all > > + * x values to negative infinity and positive infinity, respectively. > > Nice documentation, I especially like the part about what happens > outside of the defined segments, that was not evident. > > > + */ > > + > > +/** > > + * \typedef Pwl::Point > > + * \brief Describe a point in two-dimensional real space > > + */ > > + > > +/** > > + * \class Pwl::Interval > > + * \brief Describe an interval in one-dimensional real space > > + */ > > + > > +/** > > + * \fn Pwl::Interval::Interval(double _start, double _end) > > + * \brief Construct an interval > > + * \param _start Start of the interval > > + * \param _end End of the interval > > + */ > > + > > +/** > > + * \fn Pwl::Interval::contains > > + * \brief Check if a given value falls within the interval > > + * \param value Value to check > > * \return True if the value falls within the interval, including its > * bounds, or false otherwise > > > + */ > > + > > +/** > > + * \fn Pwl::Interval::clamp > > + * \brief Clamp a value such that it is within the interval > > + * \param value Value to clamp > > * \return The clamped value > > > + */ > > + > > +/** > > + * \fn Pwl::Interval::length > > + * \brief Compute the length of the interval > > * \return The length of the interval > > > + */ > > + > > +/** > > + * \var Pwl::Interval::start > > + * \brief Start of the interval > > + */ > > > > -using namespace RPiController; > > +/** > > + * \var Pwl::Interval::end > > + * \brief End of the interval > > + */ > > > > -int Pwl::read(const libcamera::YamlObject ¶ms) > > +/** > > + * \fn Pwl::Pwl(std::vector<Point> const &points) > > + * \brief Construct a piecewise linear function from a list of 2D points > > + * \param points Vector of points from which to construct the piecewise linear function > > + * > > + * \a points must be in ascending order of x-value. > > + */ > > + > > +/** > > + * \brief Populate the piecewise linear function from yaml data > > + * \param params Yaml data to populate the piecewise linear function with > > + * > > + * Any existing points in the piecewise linear function will *not* be > > + * overwritten. > > It sounds like a bit of an off behaviour, compared to clearing the PWL > first. Does anything depends on it ? > Actually, from what I can tell everything else assumes it's cleared, so I'll clear it first. > > + * > > + * The yaml data is expected to be a list with an even number of numerical > > + * elements. These will be parsed in pairs into x and y points in the piecewise > > + * linear function, and added in order. x must be monotonically increasing. > > + * > > + * \return 0 on success, negative error code otherwise > > + */ > > +int Pwl::readYaml(const libcamera::YamlObject ¶ms) > > { > > if (!params.size() || params.size() % 2) > > return -EINVAL; > > @@ -24,64 +125,109 @@ int Pwl::read(const libcamera::YamlObject ¶ms) > > auto x = it->get<double>(); > > if (!x) > > return -EINVAL; > > - if (it != list.begin() && *x <= points_.back().x) > > + if (it != list.begin() && *x <= points_.back().x()) > > return -EINVAL; > > > > auto y = (++it)->get<double>(); > > if (!y) > > return -EINVAL; > > > > - points_.push_back(Point(*x, *y)); > > + points_.push_back(Point({ *x, *y })); > > } > > > > return 0; > > } > > > > +/** > > + * \brief Append a point to the end of the piecewise linear function > > + * \param x x-coordinate of the point to add to the piecewise linear function > > + * \param y y-coordinate of the point to add to the piecewise linear function > > + * \param eps Epsilon for the minimum x distance between points (optional) > > + * > > + * The point's x-coordinate must be greater than the x-coordinate of the last > > + * (= greatest) point already in the piecewise linear function. > > + */ > > void Pwl::append(double x, double y, const double eps) > > { > > - if (points_.empty() || points_.back().x + eps < x) > > - points_.push_back(Point(x, y)); > > + if (points_.empty() || points_.back().x() + eps < x) > > + points_.push_back(Point({ x, y })); > > } > > > > +/** > > + * \brief Prepend a point to the beginning of the piecewise linear function > > + * \param x x-coordinate of the point to add to the piecewise linear function > > + * \param y y-coordinate of the point to add to the piecewise linear function > > + * \param eps Epsilon for the minimum x distance between points (optional) > > + * > > + * The point's x-coordinate must be less than the x-coordinate of the first > > + * (= smallest) point already in the piecewise linear function. > > + */ > > void Pwl::prepend(double x, double y, const double eps) > > { > > - if (points_.empty() || points_.front().x - eps > x) > > - points_.insert(points_.begin(), Point(x, y)); > > + if (points_.empty() || points_.front().x() - eps > x) > > + points_.insert(points_.begin(), Point({ x, y })); > > } > > > > +/** > > + * \brief Get the domain of the piecewise linear function > > + * \return An interval representing the domain > > + */ > > Pwl::Interval Pwl::domain() const > > { > > - return Interval(points_[0].x, points_[points_.size() - 1].x); > > + return Interval(points_[0].x(), points_[points_.size() - 1].x()); > > } > > > > +/** > > + * \brief Get the range of the piecewise linear function > > + * \return An interval representing the range > > + */ > > Pwl::Interval Pwl::range() const > > { > > - double lo = points_[0].y, hi = lo; > > + double lo = points_[0].y(), hi = lo; > > for (auto &p : points_) > > - lo = std::min(lo, p.y), hi = std::max(hi, p.y); > > + lo = std::min(lo, p.y()), hi = std::max(hi, p.y()); > > return Interval(lo, hi); > > } > > > > +/** > > + * \brief Check if the piecewise linear function is empty > > + * \return True if there are no points in the function, false otherwise > > + */ > > bool Pwl::empty() const > > { > > return points_.empty(); > > } > > > > -double Pwl::eval(double x, int *spanPtr, bool updateSpan) const > > +/** > > + * \brief Evaluate the piecewise linear function > > + * \param[in] x The x value to input into the function > > + * \param[inout] span Initial guess for span > > + * \param[in] updateSpan Set to true to update span > > + * > > + * Evaluate Pwl, optionally supplying an initial guess for the > > + * "span". The "span" may be optionally be updated. If you want to know > > + * the "span" value but don't have an initial guess you can set it to > > + * -1. > > + * > > + * \return The result of evaluating the piecewise linear function at position \a x > > + */ > > +double Pwl::eval(double x, int *span, bool updateSpan) const > > { > > - int span = findSpan(x, spanPtr && *spanPtr != -1 ? *spanPtr : points_.size() / 2 - 1); > > - if (spanPtr && updateSpan) > > - *spanPtr = span; > > - return points_[span].y + > > - (x - points_[span].x) * (points_[span + 1].y - points_[span].y) / > > - (points_[span + 1].x - points_[span].x); > > + int index = findSpan(x, span && *span != -1 > > + ? *span > > + : points_.size() / 2 - 1); > > + if (span && updateSpan) > > + *span = index; > > + return points_[index].y() + > > + (x - points_[index].x()) * (points_[index + 1].y() - points_[index].y()) / > > + (points_[index + 1].x() - points_[index].x()); > > } > > > > int Pwl::findSpan(double x, int span) const > > { > > /* > > * Pwls are generally small, so linear search may well be faster than > > - * binary, though could review this if large PWls start turning up. > > + * binary, though could review this if large Pwls start turning up. > > */ > > int lastSpan = points_.size() - 2; > > /* > > @@ -89,65 +235,43 @@ int Pwl::findSpan(double x, int span) const > > * control point > > */ > > span = std::max(0, std::min(lastSpan, span)); > > - while (span < lastSpan && x >= points_[span + 1].x) > > + while (span < lastSpan && x >= points_[span + 1].x()) > > span++; > > - while (span && x < points_[span].x) > > + while (span && x < points_[span].x()) > > span--; > > return span; > > } > > > > -Pwl::PerpType Pwl::invert(Point const &xy, Point &perp, int &span, > > - const double eps) const > > -{ > > - assert(span >= -1); > > - bool prevOffEnd = false; > > - for (span = span + 1; span < (int)points_.size() - 1; span++) { > > - Point spanVec = points_[span + 1] - points_[span]; > > - double t = ((xy - points_[span]) % spanVec) / spanVec.len2(); > > - if (t < -eps) /* off the start of this span */ > > - { > > - if (span == 0) { > > - perp = points_[span]; > > - return PerpType::Start; > > - } else if (prevOffEnd) { > > - perp = points_[span]; > > - return PerpType::Vertex; > > - } > > - } else if (t > 1 + eps) /* off the end of this span */ > > - { > > - if (span == (int)points_.size() - 2) { > > - perp = points_[span + 1]; > > - return PerpType::End; > > - } > > - prevOffEnd = true; > > - } else /* a true perpendicular */ > > - { > > - perp = points_[span] + spanVec * t; > > - return PerpType::Perpendicular; > > - } > > - } > > - return PerpType::None; > > -} > > - > > -Pwl Pwl::inverse(bool *trueInverse, const double eps) const > > +/** > > + * \brief Compute the inverse function > > + * \param[in] eps Epsilon for the minimum x distance between points (optional) > > + * > > + * The output includes whether the resulting inverse function is a proper > > + * (true) inverse, or only a best effort (e.g. input was non-monotonic). > > + * > > + * \return A pair of the inverse piecewise linear function, and whether or not > > + * the result is a proper/true inverse > > + */ > > +std::pair<Pwl, bool> Pwl::inverse(const double eps) const > > { > > bool appended = false, prepended = false, neither = false; > > Pwl inverse; > > > > for (Point const &p : points_) { > > - if (inverse.empty()) > > - inverse.append(p.y, p.x, eps); > > - else if (std::abs(inverse.points_.back().x - p.y) <= eps || > > - std::abs(inverse.points_.front().x - p.y) <= eps) > > + if (inverse.empty()) { > > + inverse.append(p.y(), p.x(), eps); > > + } else if (std::abs(inverse.points_.back().x() - p.y()) <= eps || > > + std::abs(inverse.points_.front().x() - p.y()) <= eps) { > > /* do nothing */; > > - else if (p.y > inverse.points_.back().x) { > > - inverse.append(p.y, p.x, eps); > > + } else if (p.y() > inverse.points_.back().x()) { > > + inverse.append(p.y(), p.x(), eps); > > appended = true; > > - } else if (p.y < inverse.points_.front().x) { > > - inverse.prepend(p.y, p.x, eps); > > + } else if (p.y() < inverse.points_.front().x()) { > > + inverse.prepend(p.y(), p.x(), eps); > > prepended = true; > > - } else > > + } else { > > neither = true; > > + } > > } > > > > /* > > @@ -155,50 +279,58 @@ Pwl Pwl::inverse(bool *trueInverse, const double eps) const > > * onto both ends of the inverse, or if there were points that couldn't > > * go on either. > > */ > > - if (trueInverse) > > - *trueInverse = !(neither || (appended && prepended)); > > + bool trueInverse = !(neither || (appended && prepended)); > > > > - return inverse; > > + return { inverse, trueInverse }; > > } > > > > +/** > > + * \brief Compose two piecewise linear functions together > > + * \param[in] other The "other" piecewise linear function > > + * \param[in] eps Epsilon for the minimum x distance between points (optional) > > + * > > + * The "this" function is done first, and "other" after. > > + * > > + * \return The composed piecewise linear function > > + */ > > Pwl Pwl::compose(Pwl const &other, const double eps) const > > { > > - double thisX = points_[0].x, thisY = points_[0].y; > > + double thisX = points_[0].x(), thisY = points_[0].y(); > > int thisSpan = 0, otherSpan = other.findSpan(thisY, 0); > > - Pwl result({ { thisX, other.eval(thisY, &otherSpan, false) } }); > > + Pwl result({ Point({ thisX, other.eval(thisY, &otherSpan, false) }) }); > > + > > while (thisSpan != (int)points_.size() - 1) { > > - double dx = points_[thisSpan + 1].x - points_[thisSpan].x, > > - dy = points_[thisSpan + 1].y - points_[thisSpan].y; > > + double dx = points_[thisSpan + 1].x() - points_[thisSpan].x(), > > + dy = points_[thisSpan + 1].y() - points_[thisSpan].y(); > > if (std::abs(dy) > eps && > > otherSpan + 1 < (int)other.points_.size() && > > - points_[thisSpan + 1].y >= > > - other.points_[otherSpan + 1].x + eps) { > > + points_[thisSpan + 1].y() >= other.points_[otherSpan + 1].x() + eps) { > > /* > > * next control point in result will be where this > > * function's y reaches the next span in other > > */ > > - thisX = points_[thisSpan].x + > > - (other.points_[otherSpan + 1].x - > > - points_[thisSpan].y) * > > + thisX = points_[thisSpan].x() + > > + (other.points_[otherSpan + 1].x() - > > + points_[thisSpan].y()) * > > dx / dy; > > - thisY = other.points_[++otherSpan].x; > > + thisY = other.points_[++otherSpan].x(); > > } else if (std::abs(dy) > eps && otherSpan > 0 && > > - points_[thisSpan + 1].y <= > > - other.points_[otherSpan - 1].x - eps) { > > + points_[thisSpan + 1].y() <= > > + other.points_[otherSpan - 1].x() - eps) { > > /* > > * next control point in result will be where this > > * function's y reaches the previous span in other > > */ > > - thisX = points_[thisSpan].x + > > - (other.points_[otherSpan + 1].x - > > - points_[thisSpan].y) * > > + thisX = points_[thisSpan].x() + > > + (other.points_[otherSpan + 1].x() - > > + points_[thisSpan].y()) * > > dx / dy; > > - thisY = other.points_[--otherSpan].x; > > + thisY = other.points_[--otherSpan].x(); > > } else { > > /* we stay in the same span in other */ > > thisSpan++; > > - thisX = points_[thisSpan].x, > > - thisY = points_[thisSpan].y; > > + thisX = points_[thisSpan].x(), > > + thisY = points_[thisSpan].y(); > > } > > result.append(thisX, other.eval(thisY, &otherSpan, false), > > eps); > > @@ -206,32 +338,47 @@ Pwl Pwl::compose(Pwl const &other, const double eps) const > > return result; > > } > > > > +/** > > + * \brief Apply function to (x,y) values at every control point > > + * \param f Function to be applied > > + */ > > void Pwl::map(std::function<void(double x, double y)> f) const > > { > > for (auto &pt : points_) > > - f(pt.x, pt.y); > > + f(pt.x(), pt.y()); > > } > > > > +/** > > + * \brief Apply function to (x, y0, y1) values wherever either Pwl has a > > + * control point. > > Missing \param > > > + */ > > void Pwl::map2(Pwl const &pwl0, Pwl const &pwl1, > > std::function<void(double x, double y0, double y1)> f) > > { > > int span0 = 0, span1 = 0; > > - double x = std::min(pwl0.points_[0].x, pwl1.points_[0].x); > > + double x = std::min(pwl0.points_[0].x(), pwl1.points_[0].x()); > > f(x, pwl0.eval(x, &span0, false), pwl1.eval(x, &span1, false)); > > + > > while (span0 < (int)pwl0.points_.size() - 1 || > > span1 < (int)pwl1.points_.size() - 1) { > > if (span0 == (int)pwl0.points_.size() - 1) > > - x = pwl1.points_[++span1].x; > > + x = pwl1.points_[++span1].x(); > > else if (span1 == (int)pwl1.points_.size() - 1) > > - x = pwl0.points_[++span0].x; > > - else if (pwl0.points_[span0 + 1].x > pwl1.points_[span1 + 1].x) > > - x = pwl1.points_[++span1].x; > > + x = pwl0.points_[++span0].x(); > > + else if (pwl0.points_[span0 + 1].x() > pwl1.points_[span1 + 1].x()) > > + x = pwl1.points_[++span1].x(); > > else > > - x = pwl0.points_[++span0].x; > > + x = pwl0.points_[++span0].x(); > > f(x, pwl0.eval(x, &span0, false), pwl1.eval(x, &span1, false)); > > } > > } > > > > +/** > > + * \brief Combine two Pwls > > Missing \param > > > + * > > + * Create a new Pwl where the y values are given by running f wherever either > > + * has a knot. > > Missing \return > > > + */ > > Pwl Pwl::combine(Pwl const &pwl0, Pwl const &pwl1, > > std::function<double(double x, double y0, double y1)> f, > > const double eps) > > @@ -243,27 +390,32 @@ Pwl Pwl::combine(Pwl const &pwl0, Pwl const &pwl1, > > return result; > > } > > > > -void Pwl::matchDomain(Interval const &domain, bool clip, const double eps) > > -{ > > - int span = 0; > > - prepend(domain.start, eval(clip ? points_[0].x : domain.start, &span), > > - eps); > > - span = points_.size() - 2; > > - append(domain.end, eval(clip ? points_.back().x : domain.end, &span), > > - eps); > > -} > > - > > +/** > > + * \brief Multiply the piecewise linear function > > + * \param d Scalar multiplier to multiply the function by > > + * \return This function, after it has been multiplied by \a d > > + */ > > Pwl &Pwl::operator*=(double d) > > { > > for (auto &pt : points_) > > - pt.y *= d; > > + pt[1] *= d; > > If you add non-const x() and y() accessors to the Vector class that > return a reference, you could use > > pt.y() *= d; > > Up to you. Eeh I'll go without it. Paul > > > return *this; > > } > > > > -void Pwl::debug(FILE *fp) const > > +/** > > + * \brief Assemble and return a string describing the piecewise linear function > > + * \return A string describing the piecewise linear function > > + */ > > +std::string Pwl::toString() const > > { > > - fprintf(fp, "Pwl {\n"); > > + std::stringstream ss; > > + ss << "Pwl { "; > > for (auto &p : points_) > > - fprintf(fp, "\t(%g, %g)\n", p.x, p.y); > > - fprintf(fp, "}\n"); > > + ss << "(" << p.x() << ", " << p.y() << ") "; > > + ss << "}"; > > + return ss.str(); > > } > > + > > +} /* namespace ipa */ > > + > > +} /* namespace libcamera */ > > diff --git a/src/ipa/libipa/pwl.h b/src/ipa/libipa/pwl.h > > index 7d5e7e4d3fda..a2cbad6c1597 100644 > > --- a/src/ipa/libipa/pwl.h > > +++ b/src/ipa/libipa/pwl.h > > @@ -2,126 +2,87 @@ > > /* > > * Copyright (C) 2019, Raspberry Pi Ltd > > * > > - * piecewise linear functions interface > > + * Piecewise linear functions interface > > */ > > #pragma once > > > > +#include <algorithm> > > +#include <cmath> > > #include <functional> > > -#include <math.h> > > +#include <string> > > +#include <utility> > > #include <vector> > > > > +#include <libcamera/geometry.h> > > Unless I'm missing something, this isn't needed. > > > + > > #include "libcamera/internal/yaml_parser.h" > > > > -namespace RPiController { > > +#include "vector.h" > > + > > +namespace libcamera { > > + > > +namespace ipa { > > > > class Pwl > > { > > public: > > + using Point = Vector<double, 2>; > > + > > struct Interval { > > Interval(double _start, double _end) > > - : start(_start), end(_end) > > - { > > - } > > - double start, end; > > + : start(_start), end(_end) {} > > + > > bool contains(double value) > > { > > return value >= start && value <= end; > > } > > - double clip(double value) > > - { > > - return value < start ? start > > - : (value > end ? end : value); > > - } > > - double len() const { return end - start; } > > - }; > > - struct Point { > > - Point() : x(0), y(0) {} > > - Point(double _x, double _y) > > - : x(_x), y(_y) {} > > - double x, y; > > - Point operator-(Point const &p) const > > - { > > - return Point(x - p.x, y - p.y); > > - } > > - Point operator+(Point const &p) const > > - { > > - return Point(x + p.x, y + p.y); > > - } > > - double operator%(Point const &p) const > > + > > + double clamp(double value) > > { > > - return x * p.x + y * p.y; > > + return std::clamp(value, start, end); > > } > > - Point operator*(double f) const { return Point(x * f, y * f); } > > - Point operator/(double f) const { return Point(x / f, y / f); } > > - double len2() const { return x * x + y * y; } > > - double len() const { return sqrt(len2()); } > > + > > + double length() const { return end - start; } > > + > > + double start, end; > > }; > > + > > Pwl() {} > > Pwl() = default; > > > - Pwl(std::vector<Point> const &points) : points_(points) {} > > - int read(const libcamera::YamlObject ¶ms); > > + Pwl(const std::vector<Point> &points) > > + : points_(points) {} > > Pwl(const std::vector<Point> &points) > : points_(points) > { > } > > but I think it would be better to not make the constructor inline. You > can move the implementation to the .cpp file. Same for the default > constructor. > > > + int readYaml(const libcamera::YamlObject ¶ms); > > + > > void append(double x, double y, const double eps = 1e-6); > > Is there a reason to qualify eps with const but not x and y ? I would > qualify them all, or none (likely none). Same for other functions using > eps, I think you can drop the const qualifier. > > > - void prepend(double x, double y, const double eps = 1e-6); > > + > > + bool empty() const; > > Interval domain() const; > > Interval range() const; > > - bool empty() const; > > - /* > > - * Evaluate Pwl, optionally supplying an initial guess for the > > - * "span". The "span" may be optionally be updated. If you want to know > > - * the "span" value but don't have an initial guess you can set it to > > - * -1. > > - */ > > - double eval(double x, int *spanPtr = nullptr, > > + > > + double eval(double x, int *span = nullptr, > > bool updateSpan = true) const; > > - /* > > - * Find perpendicular closest to xy, starting from span+1 so you can > > - * call it repeatedly to check for multiple closest points (set span to > > - * -1 on the first call). Also returns "pseudo" perpendiculars; see > > - * PerpType enum. > > - */ > > - enum class PerpType { > > - None, /* no perpendicular found */ > > - Start, /* start of Pwl is closest point */ > > - End, /* end of Pwl is closest point */ > > - Vertex, /* vertex of Pwl is closest point */ > > - Perpendicular /* true perpendicular found */ > > - }; > > - PerpType invert(Point const &xy, Point &perp, int &span, > > - const double eps = 1e-6) const; > > - /* > > - * Compute the inverse function. Indicate if it is a proper (true) > > - * inverse, or only a best effort (e.g. input was non-monotonic). > > - */ > > - Pwl inverse(bool *trueInverse = nullptr, const double eps = 1e-6) const; > > - /* Compose two Pwls together, doing "this" first and "other" after. */ > > - Pwl compose(Pwl const &other, const double eps = 1e-6) const; > > - /* Apply function to (x,y) values at every control point. */ > > + > > + std::pair<Pwl, bool> inverse(const double eps = 1e-6) const; > > + Pwl compose(const Pwl &other, const double eps = 1e-6) const; > > + > > void map(std::function<void(double x, double y)> f) const; > > - /* > > - * Apply function to (x, y0, y1) values wherever either Pwl has a > > - * control point. > > - */ > > - static void map2(Pwl const &pwl0, Pwl const &pwl1, > > - std::function<void(double x, double y0, double y1)> f); > > - /* > > - * Combine two Pwls, meaning we create a new Pwl where the y values are > > - * given by running f wherever either has a knot. > > - */ > > + > > static Pwl > > - combine(Pwl const &pwl0, Pwl const &pwl1, > > + combine(const Pwl &pwl0, const Pwl &pwl1, > > std::function<double(double x, double y0, double y1)> f, > > const double eps = 1e-6); > > - /* > > - * Make "this" match (at least) the given domain. Any extension my be > > - * clipped or linear. > > - */ > > - void matchDomain(Interval const &domain, bool clip = true, > > - const double eps = 1e-6); > > + > > Pwl &operator*=(double d); > > - void debug(FILE *fp = stdout) const; > > + > > + std::string toString() const; > > > > private: > > + void prepend(double x, double y, const double eps = 1e-6); > > + static void map2(const Pwl &pwl0, const Pwl &pwl1, > > + std::function<void(double x, double y0, double y1)> f); > > We usually put the static functions first or last, but not in the > middle. > > > int findSpan(double x, int span) const; > > And a blank line here to separate functions from variables. > > Reviewed-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com> > > > std::vector<Point> points_; > > }; > > > > -} /* namespace RPiController */ > > +} /* namespace ipa */ > > + > > +} /* namespace libcamera */ > > -- > Regards, > > Laurent Pinchart
diff --git a/src/ipa/libipa/meson.build b/src/ipa/libipa/meson.build index 8b0c8fff901b..3669f8939d3b 100644 --- a/src/ipa/libipa/meson.build +++ b/src/ipa/libipa/meson.build @@ -8,6 +8,7 @@ libipa_headers = files([ 'fc_queue.h', 'histogram.h', 'module.h', + 'pwl.h', 'vector.h', ]) @@ -19,6 +20,7 @@ libipa_sources = files([ 'fc_queue.cpp', 'histogram.cpp', 'module.cpp', + 'pwl.cpp', 'vector.cpp', ]) diff --git a/src/ipa/libipa/pwl.cpp b/src/ipa/libipa/pwl.cpp index e39123767aa6..4dc59981708d 100644 --- a/src/ipa/libipa/pwl.cpp +++ b/src/ipa/libipa/pwl.cpp @@ -1,19 +1,120 @@ /* SPDX-License-Identifier: BSD-2-Clause */ /* * Copyright (C) 2019, Raspberry Pi Ltd + * Copyright (C) 2024, Ideas on Board Oy * - * piecewise linear functions + * Piecewise linear functions */ -#include <cassert> +#include "pwl.h" + +#include <assert.h> #include <cmath> +#include <sstream> #include <stdexcept> -#include "pwl.h" +#include <libcamera/geometry.h> + +/** + * \file pwl.h + * \brief Piecewise linear functions + */ + +namespace libcamera { + +namespace ipa { + +/** + * \class Pwl + * \brief Describe a univariate piecewise linear function in two-dimensional + * real space + * + * A piecewise linear function is a univariate function that maps reals to + * reals, and it is composed of multiple straight-line segments. + * + * While a mathematical piecewise linear function would usually be defined by + * a list of linear functions and for which values of the domain they apply, + * this Pwl class is instead defined by a list of points at which these line + * segments intersect. These intersecting points are known as knots. + * + * https://en.wikipedia.org/wiki/Piecewise_linear_function + * + * A consequence of the Pwl class being defined by knots instead of linear + * functions is that the values of the piecewise linear function past the ends + * of the function are constants as opposed to linear functions. In a + * mathematical piecewise linear function that is defined by multiple linear + * functions, the ends of the function are also linear functions and hence grow + * to infinity (or negative infinity). However, since this Pwl class is defined + * by knots, the y-value of the leftmost and rightmost knots will hold for all + * x values to negative infinity and positive infinity, respectively. + */ + +/** + * \typedef Pwl::Point + * \brief Describe a point in two-dimensional real space + */ + +/** + * \class Pwl::Interval + * \brief Describe an interval in one-dimensional real space + */ + +/** + * \fn Pwl::Interval::Interval(double _start, double _end) + * \brief Construct an interval + * \param _start Start of the interval + * \param _end End of the interval + */ + +/** + * \fn Pwl::Interval::contains + * \brief Check if a given value falls within the interval + * \param value Value to check + */ + +/** + * \fn Pwl::Interval::clamp + * \brief Clamp a value such that it is within the interval + * \param value Value to clamp + */ + +/** + * \fn Pwl::Interval::length + * \brief Compute the length of the interval + */ + +/** + * \var Pwl::Interval::start + * \brief Start of the interval + */ -using namespace RPiController; +/** + * \var Pwl::Interval::end + * \brief End of the interval + */ -int Pwl::read(const libcamera::YamlObject ¶ms) +/** + * \fn Pwl::Pwl(std::vector<Point> const &points) + * \brief Construct a piecewise linear function from a list of 2D points + * \param points Vector of points from which to construct the piecewise linear function + * + * \a points must be in ascending order of x-value. + */ + +/** + * \brief Populate the piecewise linear function from yaml data + * \param params Yaml data to populate the piecewise linear function with + * + * Any existing points in the piecewise linear function will *not* be + * overwritten. + * + * The yaml data is expected to be a list with an even number of numerical + * elements. These will be parsed in pairs into x and y points in the piecewise + * linear function, and added in order. x must be monotonically increasing. + * + * \return 0 on success, negative error code otherwise + */ +int Pwl::readYaml(const libcamera::YamlObject ¶ms) { if (!params.size() || params.size() % 2) return -EINVAL; @@ -24,64 +125,109 @@ int Pwl::read(const libcamera::YamlObject ¶ms) auto x = it->get<double>(); if (!x) return -EINVAL; - if (it != list.begin() && *x <= points_.back().x) + if (it != list.begin() && *x <= points_.back().x()) return -EINVAL; auto y = (++it)->get<double>(); if (!y) return -EINVAL; - points_.push_back(Point(*x, *y)); + points_.push_back(Point({ *x, *y })); } return 0; } +/** + * \brief Append a point to the end of the piecewise linear function + * \param x x-coordinate of the point to add to the piecewise linear function + * \param y y-coordinate of the point to add to the piecewise linear function + * \param eps Epsilon for the minimum x distance between points (optional) + * + * The point's x-coordinate must be greater than the x-coordinate of the last + * (= greatest) point already in the piecewise linear function. + */ void Pwl::append(double x, double y, const double eps) { - if (points_.empty() || points_.back().x + eps < x) - points_.push_back(Point(x, y)); + if (points_.empty() || points_.back().x() + eps < x) + points_.push_back(Point({ x, y })); } +/** + * \brief Prepend a point to the beginning of the piecewise linear function + * \param x x-coordinate of the point to add to the piecewise linear function + * \param y y-coordinate of the point to add to the piecewise linear function + * \param eps Epsilon for the minimum x distance between points (optional) + * + * The point's x-coordinate must be less than the x-coordinate of the first + * (= smallest) point already in the piecewise linear function. + */ void Pwl::prepend(double x, double y, const double eps) { - if (points_.empty() || points_.front().x - eps > x) - points_.insert(points_.begin(), Point(x, y)); + if (points_.empty() || points_.front().x() - eps > x) + points_.insert(points_.begin(), Point({ x, y })); } +/** + * \brief Get the domain of the piecewise linear function + * \return An interval representing the domain + */ Pwl::Interval Pwl::domain() const { - return Interval(points_[0].x, points_[points_.size() - 1].x); + return Interval(points_[0].x(), points_[points_.size() - 1].x()); } +/** + * \brief Get the range of the piecewise linear function + * \return An interval representing the range + */ Pwl::Interval Pwl::range() const { - double lo = points_[0].y, hi = lo; + double lo = points_[0].y(), hi = lo; for (auto &p : points_) - lo = std::min(lo, p.y), hi = std::max(hi, p.y); + lo = std::min(lo, p.y()), hi = std::max(hi, p.y()); return Interval(lo, hi); } +/** + * \brief Check if the piecewise linear function is empty + * \return True if there are no points in the function, false otherwise + */ bool Pwl::empty() const { return points_.empty(); } -double Pwl::eval(double x, int *spanPtr, bool updateSpan) const +/** + * \brief Evaluate the piecewise linear function + * \param[in] x The x value to input into the function + * \param[inout] span Initial guess for span + * \param[in] updateSpan Set to true to update span + * + * Evaluate Pwl, optionally supplying an initial guess for the + * "span". The "span" may be optionally be updated. If you want to know + * the "span" value but don't have an initial guess you can set it to + * -1. + * + * \return The result of evaluating the piecewise linear function at position \a x + */ +double Pwl::eval(double x, int *span, bool updateSpan) const { - int span = findSpan(x, spanPtr && *spanPtr != -1 ? *spanPtr : points_.size() / 2 - 1); - if (spanPtr && updateSpan) - *spanPtr = span; - return points_[span].y + - (x - points_[span].x) * (points_[span + 1].y - points_[span].y) / - (points_[span + 1].x - points_[span].x); + int index = findSpan(x, span && *span != -1 + ? *span + : points_.size() / 2 - 1); + if (span && updateSpan) + *span = index; + return points_[index].y() + + (x - points_[index].x()) * (points_[index + 1].y() - points_[index].y()) / + (points_[index + 1].x() - points_[index].x()); } int Pwl::findSpan(double x, int span) const { /* * Pwls are generally small, so linear search may well be faster than - * binary, though could review this if large PWls start turning up. + * binary, though could review this if large Pwls start turning up. */ int lastSpan = points_.size() - 2; /* @@ -89,65 +235,43 @@ int Pwl::findSpan(double x, int span) const * control point */ span = std::max(0, std::min(lastSpan, span)); - while (span < lastSpan && x >= points_[span + 1].x) + while (span < lastSpan && x >= points_[span + 1].x()) span++; - while (span && x < points_[span].x) + while (span && x < points_[span].x()) span--; return span; } -Pwl::PerpType Pwl::invert(Point const &xy, Point &perp, int &span, - const double eps) const -{ - assert(span >= -1); - bool prevOffEnd = false; - for (span = span + 1; span < (int)points_.size() - 1; span++) { - Point spanVec = points_[span + 1] - points_[span]; - double t = ((xy - points_[span]) % spanVec) / spanVec.len2(); - if (t < -eps) /* off the start of this span */ - { - if (span == 0) { - perp = points_[span]; - return PerpType::Start; - } else if (prevOffEnd) { - perp = points_[span]; - return PerpType::Vertex; - } - } else if (t > 1 + eps) /* off the end of this span */ - { - if (span == (int)points_.size() - 2) { - perp = points_[span + 1]; - return PerpType::End; - } - prevOffEnd = true; - } else /* a true perpendicular */ - { - perp = points_[span] + spanVec * t; - return PerpType::Perpendicular; - } - } - return PerpType::None; -} - -Pwl Pwl::inverse(bool *trueInverse, const double eps) const +/** + * \brief Compute the inverse function + * \param[in] eps Epsilon for the minimum x distance between points (optional) + * + * The output includes whether the resulting inverse function is a proper + * (true) inverse, or only a best effort (e.g. input was non-monotonic). + * + * \return A pair of the inverse piecewise linear function, and whether or not + * the result is a proper/true inverse + */ +std::pair<Pwl, bool> Pwl::inverse(const double eps) const { bool appended = false, prepended = false, neither = false; Pwl inverse; for (Point const &p : points_) { - if (inverse.empty()) - inverse.append(p.y, p.x, eps); - else if (std::abs(inverse.points_.back().x - p.y) <= eps || - std::abs(inverse.points_.front().x - p.y) <= eps) + if (inverse.empty()) { + inverse.append(p.y(), p.x(), eps); + } else if (std::abs(inverse.points_.back().x() - p.y()) <= eps || + std::abs(inverse.points_.front().x() - p.y()) <= eps) { /* do nothing */; - else if (p.y > inverse.points_.back().x) { - inverse.append(p.y, p.x, eps); + } else if (p.y() > inverse.points_.back().x()) { + inverse.append(p.y(), p.x(), eps); appended = true; - } else if (p.y < inverse.points_.front().x) { - inverse.prepend(p.y, p.x, eps); + } else if (p.y() < inverse.points_.front().x()) { + inverse.prepend(p.y(), p.x(), eps); prepended = true; - } else + } else { neither = true; + } } /* @@ -155,50 +279,58 @@ Pwl Pwl::inverse(bool *trueInverse, const double eps) const * onto both ends of the inverse, or if there were points that couldn't * go on either. */ - if (trueInverse) - *trueInverse = !(neither || (appended && prepended)); + bool trueInverse = !(neither || (appended && prepended)); - return inverse; + return { inverse, trueInverse }; } +/** + * \brief Compose two piecewise linear functions together + * \param[in] other The "other" piecewise linear function + * \param[in] eps Epsilon for the minimum x distance between points (optional) + * + * The "this" function is done first, and "other" after. + * + * \return The composed piecewise linear function + */ Pwl Pwl::compose(Pwl const &other, const double eps) const { - double thisX = points_[0].x, thisY = points_[0].y; + double thisX = points_[0].x(), thisY = points_[0].y(); int thisSpan = 0, otherSpan = other.findSpan(thisY, 0); - Pwl result({ { thisX, other.eval(thisY, &otherSpan, false) } }); + Pwl result({ Point({ thisX, other.eval(thisY, &otherSpan, false) }) }); + while (thisSpan != (int)points_.size() - 1) { - double dx = points_[thisSpan + 1].x - points_[thisSpan].x, - dy = points_[thisSpan + 1].y - points_[thisSpan].y; + double dx = points_[thisSpan + 1].x() - points_[thisSpan].x(), + dy = points_[thisSpan + 1].y() - points_[thisSpan].y(); if (std::abs(dy) > eps && otherSpan + 1 < (int)other.points_.size() && - points_[thisSpan + 1].y >= - other.points_[otherSpan + 1].x + eps) { + points_[thisSpan + 1].y() >= other.points_[otherSpan + 1].x() + eps) { /* * next control point in result will be where this * function's y reaches the next span in other */ - thisX = points_[thisSpan].x + - (other.points_[otherSpan + 1].x - - points_[thisSpan].y) * + thisX = points_[thisSpan].x() + + (other.points_[otherSpan + 1].x() - + points_[thisSpan].y()) * dx / dy; - thisY = other.points_[++otherSpan].x; + thisY = other.points_[++otherSpan].x(); } else if (std::abs(dy) > eps && otherSpan > 0 && - points_[thisSpan + 1].y <= - other.points_[otherSpan - 1].x - eps) { + points_[thisSpan + 1].y() <= + other.points_[otherSpan - 1].x() - eps) { /* * next control point in result will be where this * function's y reaches the previous span in other */ - thisX = points_[thisSpan].x + - (other.points_[otherSpan + 1].x - - points_[thisSpan].y) * + thisX = points_[thisSpan].x() + + (other.points_[otherSpan + 1].x() - + points_[thisSpan].y()) * dx / dy; - thisY = other.points_[--otherSpan].x; + thisY = other.points_[--otherSpan].x(); } else { /* we stay in the same span in other */ thisSpan++; - thisX = points_[thisSpan].x, - thisY = points_[thisSpan].y; + thisX = points_[thisSpan].x(), + thisY = points_[thisSpan].y(); } result.append(thisX, other.eval(thisY, &otherSpan, false), eps); @@ -206,32 +338,47 @@ Pwl Pwl::compose(Pwl const &other, const double eps) const return result; } +/** + * \brief Apply function to (x,y) values at every control point + * \param f Function to be applied + */ void Pwl::map(std::function<void(double x, double y)> f) const { for (auto &pt : points_) - f(pt.x, pt.y); + f(pt.x(), pt.y()); } +/** + * \brief Apply function to (x, y0, y1) values wherever either Pwl has a + * control point. + */ void Pwl::map2(Pwl const &pwl0, Pwl const &pwl1, std::function<void(double x, double y0, double y1)> f) { int span0 = 0, span1 = 0; - double x = std::min(pwl0.points_[0].x, pwl1.points_[0].x); + double x = std::min(pwl0.points_[0].x(), pwl1.points_[0].x()); f(x, pwl0.eval(x, &span0, false), pwl1.eval(x, &span1, false)); + while (span0 < (int)pwl0.points_.size() - 1 || span1 < (int)pwl1.points_.size() - 1) { if (span0 == (int)pwl0.points_.size() - 1) - x = pwl1.points_[++span1].x; + x = pwl1.points_[++span1].x(); else if (span1 == (int)pwl1.points_.size() - 1) - x = pwl0.points_[++span0].x; - else if (pwl0.points_[span0 + 1].x > pwl1.points_[span1 + 1].x) - x = pwl1.points_[++span1].x; + x = pwl0.points_[++span0].x(); + else if (pwl0.points_[span0 + 1].x() > pwl1.points_[span1 + 1].x()) + x = pwl1.points_[++span1].x(); else - x = pwl0.points_[++span0].x; + x = pwl0.points_[++span0].x(); f(x, pwl0.eval(x, &span0, false), pwl1.eval(x, &span1, false)); } } +/** + * \brief Combine two Pwls + * + * Create a new Pwl where the y values are given by running f wherever either + * has a knot. + */ Pwl Pwl::combine(Pwl const &pwl0, Pwl const &pwl1, std::function<double(double x, double y0, double y1)> f, const double eps) @@ -243,27 +390,32 @@ Pwl Pwl::combine(Pwl const &pwl0, Pwl const &pwl1, return result; } -void Pwl::matchDomain(Interval const &domain, bool clip, const double eps) -{ - int span = 0; - prepend(domain.start, eval(clip ? points_[0].x : domain.start, &span), - eps); - span = points_.size() - 2; - append(domain.end, eval(clip ? points_.back().x : domain.end, &span), - eps); -} - +/** + * \brief Multiply the piecewise linear function + * \param d Scalar multiplier to multiply the function by + * \return This function, after it has been multiplied by \a d + */ Pwl &Pwl::operator*=(double d) { for (auto &pt : points_) - pt.y *= d; + pt[1] *= d; return *this; } -void Pwl::debug(FILE *fp) const +/** + * \brief Assemble and return a string describing the piecewise linear function + * \return A string describing the piecewise linear function + */ +std::string Pwl::toString() const { - fprintf(fp, "Pwl {\n"); + std::stringstream ss; + ss << "Pwl { "; for (auto &p : points_) - fprintf(fp, "\t(%g, %g)\n", p.x, p.y); - fprintf(fp, "}\n"); + ss << "(" << p.x() << ", " << p.y() << ") "; + ss << "}"; + return ss.str(); } + +} /* namespace ipa */ + +} /* namespace libcamera */ diff --git a/src/ipa/libipa/pwl.h b/src/ipa/libipa/pwl.h index 7d5e7e4d3fda..a2cbad6c1597 100644 --- a/src/ipa/libipa/pwl.h +++ b/src/ipa/libipa/pwl.h @@ -2,126 +2,87 @@ /* * Copyright (C) 2019, Raspberry Pi Ltd * - * piecewise linear functions interface + * Piecewise linear functions interface */ #pragma once +#include <algorithm> +#include <cmath> #include <functional> -#include <math.h> +#include <string> +#include <utility> #include <vector> +#include <libcamera/geometry.h> + #include "libcamera/internal/yaml_parser.h" -namespace RPiController { +#include "vector.h" + +namespace libcamera { + +namespace ipa { class Pwl { public: + using Point = Vector<double, 2>; + struct Interval { Interval(double _start, double _end) - : start(_start), end(_end) - { - } - double start, end; + : start(_start), end(_end) {} + bool contains(double value) { return value >= start && value <= end; } - double clip(double value) - { - return value < start ? start - : (value > end ? end : value); - } - double len() const { return end - start; } - }; - struct Point { - Point() : x(0), y(0) {} - Point(double _x, double _y) - : x(_x), y(_y) {} - double x, y; - Point operator-(Point const &p) const - { - return Point(x - p.x, y - p.y); - } - Point operator+(Point const &p) const - { - return Point(x + p.x, y + p.y); - } - double operator%(Point const &p) const + + double clamp(double value) { - return x * p.x + y * p.y; + return std::clamp(value, start, end); } - Point operator*(double f) const { return Point(x * f, y * f); } - Point operator/(double f) const { return Point(x / f, y / f); } - double len2() const { return x * x + y * y; } - double len() const { return sqrt(len2()); } + + double length() const { return end - start; } + + double start, end; }; + Pwl() {} - Pwl(std::vector<Point> const &points) : points_(points) {} - int read(const libcamera::YamlObject ¶ms); + Pwl(const std::vector<Point> &points) + : points_(points) {} + int readYaml(const libcamera::YamlObject ¶ms); + void append(double x, double y, const double eps = 1e-6); - void prepend(double x, double y, const double eps = 1e-6); + + bool empty() const; Interval domain() const; Interval range() const; - bool empty() const; - /* - * Evaluate Pwl, optionally supplying an initial guess for the - * "span". The "span" may be optionally be updated. If you want to know - * the "span" value but don't have an initial guess you can set it to - * -1. - */ - double eval(double x, int *spanPtr = nullptr, + + double eval(double x, int *span = nullptr, bool updateSpan = true) const; - /* - * Find perpendicular closest to xy, starting from span+1 so you can - * call it repeatedly to check for multiple closest points (set span to - * -1 on the first call). Also returns "pseudo" perpendiculars; see - * PerpType enum. - */ - enum class PerpType { - None, /* no perpendicular found */ - Start, /* start of Pwl is closest point */ - End, /* end of Pwl is closest point */ - Vertex, /* vertex of Pwl is closest point */ - Perpendicular /* true perpendicular found */ - }; - PerpType invert(Point const &xy, Point &perp, int &span, - const double eps = 1e-6) const; - /* - * Compute the inverse function. Indicate if it is a proper (true) - * inverse, or only a best effort (e.g. input was non-monotonic). - */ - Pwl inverse(bool *trueInverse = nullptr, const double eps = 1e-6) const; - /* Compose two Pwls together, doing "this" first and "other" after. */ - Pwl compose(Pwl const &other, const double eps = 1e-6) const; - /* Apply function to (x,y) values at every control point. */ + + std::pair<Pwl, bool> inverse(const double eps = 1e-6) const; + Pwl compose(const Pwl &other, const double eps = 1e-6) const; + void map(std::function<void(double x, double y)> f) const; - /* - * Apply function to (x, y0, y1) values wherever either Pwl has a - * control point. - */ - static void map2(Pwl const &pwl0, Pwl const &pwl1, - std::function<void(double x, double y0, double y1)> f); - /* - * Combine two Pwls, meaning we create a new Pwl where the y values are - * given by running f wherever either has a knot. - */ + static Pwl - combine(Pwl const &pwl0, Pwl const &pwl1, + combine(const Pwl &pwl0, const Pwl &pwl1, std::function<double(double x, double y0, double y1)> f, const double eps = 1e-6); - /* - * Make "this" match (at least) the given domain. Any extension my be - * clipped or linear. - */ - void matchDomain(Interval const &domain, bool clip = true, - const double eps = 1e-6); + Pwl &operator*=(double d); - void debug(FILE *fp = stdout) const; + + std::string toString() const; private: + void prepend(double x, double y, const double eps = 1e-6); + static void map2(const Pwl &pwl0, const Pwl &pwl1, + std::function<void(double x, double y0, double y1)> f); int findSpan(double x, int span) const; std::vector<Point> points_; }; -} /* namespace RPiController */ +} /* namespace ipa */ + +} /* namespace libcamera */