[v6,3/4] ipa: libipa: pwl: Clean up Pwl class to match libcamera
diff mbox series

Message ID 20240607084301.2791258-4-paul.elder@ideasonboard.com
State Superseded
Headers show
Series
  • ipa: Move Pwl from Raspberry Pi to libipa
Related show

Commit Message

Paul Elder June 7, 2024, 8:43 a.m. UTC
Clean up the Pwl class copied from the Raspberry Pi IPA to align it more
with the libcamera style.

Signed-off-by: Paul Elder <paul.elder@ideasonboard.com>
Reviewed-by: Stefan Klug <stefan.klug@ideasonboard.com>
Acked-by: David Plowman <david.plowman@raspberrypi.com>

---
Changes in v6:
- move adding pwl to meson here

Changes in v5:
- fix documentation order
- fix some typos
- add the Vector-based PointF

Changes in v4:
- update to apply to new copy of pwl
- add documentation
- fix doxygen

No change in v3

Changes in v2:
- s/FPoint/PointF/g
- improve documentation
- s/matchDomain/extendDomain/
---
 src/ipa/libipa/meson.build |   2 +
 src/ipa/libipa/pwl.cpp     | 365 +++++++++++++++++++++++++++++--------
 src/ipa/libipa/pwl.h       | 123 +++++--------
 3 files changed, 344 insertions(+), 146 deletions(-)

Comments

Kieran Bingham June 10, 2024, 9:26 a.m. UTC | #1
Quoting Paul Elder (2024-06-07 09:43:00)
> Clean up the Pwl class copied from the Raspberry Pi IPA to align it more
> with the libcamera style.
> 
> Signed-off-by: Paul Elder <paul.elder@ideasonboard.com>
> Reviewed-by: Stefan Klug <stefan.klug@ideasonboard.com>
> Acked-by: David Plowman <david.plowman@raspberrypi.com>
> 
> ---
> Changes in v6:
> - move adding pwl to meson here

Reviewed-by: Kieran Bingham <kieran.bingham@ideasonboard.com>

> 
> Changes in v5:
> - fix documentation order
> - fix some typos
> - add the Vector-based PointF
> 
> Changes in v4:
> - update to apply to new copy of pwl
> - add documentation
> - fix doxygen
> 
> No change in v3
> 
> Changes in v2:
> - s/FPoint/PointF/g
> - improve documentation
> - s/matchDomain/extendDomain/
> ---
>  src/ipa/libipa/meson.build |   2 +
>  src/ipa/libipa/pwl.cpp     | 365 +++++++++++++++++++++++++++++--------
>  src/ipa/libipa/pwl.h       | 123 +++++--------
>  3 files changed, 344 insertions(+), 146 deletions(-)
> 
> diff --git a/src/ipa/libipa/meson.build b/src/ipa/libipa/meson.build
> index 7ce885da7..8ec9c7847 100644
> --- a/src/ipa/libipa/meson.build
> +++ b/src/ipa/libipa/meson.build
> @@ -8,6 +8,7 @@ libipa_headers = files([
>      'fc_queue.h',
>      'histogram.h',
>      'module.h',
> +    'pwl.h',
>  ])
>  
>  libipa_sources = files([
> @@ -18,6 +19,7 @@ libipa_sources = files([
>      'fc_queue.cpp',
>      'histogram.cpp',
>      'module.cpp',
> +    'pwl.cpp',
>  ])
>  
>  libipa_includes = include_directories('..')
> diff --git a/src/ipa/libipa/pwl.cpp b/src/ipa/libipa/pwl.cpp
> index e39123767..8f8ee17e8 100644
> --- a/src/ipa/libipa/pwl.cpp
> +++ b/src/ipa/libipa/pwl.cpp
> @@ -1,19 +1,120 @@
>  /* SPDX-License-Identifier: BSD-2-Clause */
>  /*
>   * Copyright (C) 2019, Raspberry Pi Ltd
> + * Copyright (C) 2024, Ideas on Board Oy
>   *
> - * piecewise linear functions
> + * Piecewise linear functions
>   */
>  
> +#include "pwl.h"
> +
>  #include <cassert>
>  #include <cmath>
> +#include <sstream>
>  #include <stdexcept>
>  
> -#include "pwl.h"
> +#include <libcamera/geometry.h>
> +
> +/**
> + * \file pwl.h
> + * \brief Piecewise linear functions
> + */
> +
> +namespace libcamera {
> +
> +namespace ipa {
> +
> +/**
> + * \class Pwl
> + * \brief Describe a univariate piecewise linear function in real space
> + */
> +
> +/**
> + * \typedef Pwl::PointF
> + * \brief Describe a point in two-dimensional real space
> + */
> +
> +/**
> + * \enum Pwl::PerpType
> + * \brief Type of perpendicular found when inverting a piecewise linear function
> + *
> + * \var Pwl::PerpType::None
> + * \brief No perpendicular found
> + *
> + * \var Pwl::PerpType::Start
> + * \brief Start of Pwl is closest point
> + *
> + * \var Pwl::PerpType::End
> + * \brief End of Pwl is closest point
> + *
> + * \var Pwl::PerpType::Vertex
> + * \brief Vertex of Pwl is closest point
> + *
> + * \var Pwl::PerpType::Perpendicular
> + * \brief True perpendicular found
> + */
>  
> -using namespace RPiController;
> +/**
> + * \class Pwl::Interval
> + * \brief Describe an interval in one-dimensional real space
> + */
> +
> +/**
> + * \fn Pwl::Interval::Interval(double _start, double _end)
> + * \brief Construct an interval
> + * \param _start Start of the interval
> + * \param _end End of the interval
> + */
> +
> +/**
> + * \fn Pwl::Interval::contains
> + * \brief Check if a given value falls within the interval
> + * \param value Value to check
> + */
> +
> +/**
> + * \fn Pwl::Interval::clamp
> + * \brief Clamp a value such that it is within the interval
> + * \param value Value to clamp
> + */
> +
> +/**
> + * \fn Pwl::Interval::len
> + * \brief Compute the length of the interval
> + */
>  
> -int Pwl::read(const libcamera::YamlObject &params)
> +/**
> + * \var Pwl::Interval::start
> + * \brief Start of the interval
> + */
> +
> +/**
> + * \var Pwl::Interval::end
> + * \brief End of the interval
> + */
> +
> +/**
> + * \fn Pwl::Pwl(std::vector<PointF> const &points)
> + * \brief Construct a piecewise linear function from a list of 2D points
> + * \param points Vector of points from which to construct the piecewise linear function
> + *
> + * \a points must be in ascending order of x-value.
> + */
> +
> +/**
> + * \brief Populate the piecewise linear function from yaml data
> + * \param params Yaml data to populate the piecewise linear function with
> + *
> + * Any existing points in the piecewise linear function will *not* be
> + * overwritten.
> + *
> + * The yaml data is expected to be a list with an even number of numerical
> + * elements. These will be parsed in pairs into x and y points in the piecewise
> + * linear function, and added in order. x must be monotonically increasing.
> + *
> + * \return 0 on success, negative error code otherwise
> + */
> +int Pwl::readYaml(const libcamera::YamlObject &params)
>  {
>         if (!params.size() || params.size() % 2)
>                 return -EINVAL;
> @@ -24,64 +125,109 @@ int Pwl::read(const libcamera::YamlObject &params)
>                 auto x = it->get<double>();
>                 if (!x)
>                         return -EINVAL;
> -               if (it != list.begin() && *x <= points_.back().x)
> +               if (it != list.begin() && *x <= points_.back().x())
>                         return -EINVAL;
>  
>                 auto y = (++it)->get<double>();
>                 if (!y)
>                         return -EINVAL;
>  
> -               points_.push_back(Point(*x, *y));
> +               points_.push_back(PointF({ *x, *y }));
>         }
>  
>         return 0;
>  }
>  
> +/**
> + * \brief Append a point to the end of the piecewise linear function
> + * \param x x-coordinate of the point to add to the piecewise linear function
> + * \param y y-coordinate of the point to add to the piecewise linear function
> + * \param eps Epsilon for the minimum x distance between points (optional)
> + *
> + * The point's x-coordinate must be greater than the x-coordinate of the last
> + * (= greatest) point already in the piecewise linear function.
> + */
>  void Pwl::append(double x, double y, const double eps)
>  {
> -       if (points_.empty() || points_.back().x + eps < x)
> -               points_.push_back(Point(x, y));
> +       if (points_.empty() || points_.back().x() + eps < x)
> +               points_.push_back(PointF({ x, y }));
>  }
>  
> +/**
> + * \brief Prepend a point to the beginning of the piecewise linear function
> + * \param x x-coordinate of the point to add to the piecewise linear function
> + * \param y y-coordinate of the point to add to the piecewise linear function
> + * \param eps Epsilon for the minimum x distance between points (optional)
> + *
> + * The point's x-coordinate must be less than the x-coordinate of the first
> + * (= smallest) point already in the piecewise linear function.
> + */
>  void Pwl::prepend(double x, double y, const double eps)
>  {
> -       if (points_.empty() || points_.front().x - eps > x)
> -               points_.insert(points_.begin(), Point(x, y));
> +       if (points_.empty() || points_.front().x() - eps > x)
> +               points_.insert(points_.begin(), PointF({ x, y }));
>  }
>  
> +/**
> + * \brief Get the domain of the piecewise linear function
> + * \return An interval representing the domain
> + */
>  Pwl::Interval Pwl::domain() const
>  {
> -       return Interval(points_[0].x, points_[points_.size() - 1].x);
> +       return Interval(points_[0].x(), points_[points_.size() - 1].x());
>  }
>  
> +/**
> + * \brief Get the range of the piecewise linear function
> + * \return An interval representing the range
> + */
>  Pwl::Interval Pwl::range() const
>  {
> -       double lo = points_[0].y, hi = lo;
> +       double lo = points_[0].y(), hi = lo;
>         for (auto &p : points_)
> -               lo = std::min(lo, p.y), hi = std::max(hi, p.y);
> +               lo = std::min(lo, p.y()), hi = std::max(hi, p.y());
>         return Interval(lo, hi);
>  }
>  
> +/**
> + * \brief Check if the piecewise linear function is empty
> + * \return True if there are no points in the function, false otherwise
> + */
>  bool Pwl::empty() const
>  {
>         return points_.empty();
>  }
>  
> +/**
> + * \brief Evaluate the piecewise linear function
> + * \param[in] x The x value to input into the function
> + * \param[inout] spanPtr Initial guess for span
> + * \param[in] updateSpan Set to true to update spanPtr
> + *
> + * Evaluate Pwl, optionally supplying an initial guess for the
> + * "span". The "span" may be optionally be updated. If you want to know
> + * the "span" value but don't have an initial guess you can set it to
> + * -1.
> + *
> + *  \return The result of evaluating the piecewise linear function at position \a x
> + */
>  double Pwl::eval(double x, int *spanPtr, bool updateSpan) const
>  {
> -       int span = findSpan(x, spanPtr && *spanPtr != -1 ? *spanPtr : points_.size() / 2 - 1);
> +       int span = findSpan(x, spanPtr && *spanPtr != -1
> +                                       ? *spanPtr
> +                                       : points_.size() / 2 - 1);
>         if (spanPtr && updateSpan)
>                 *spanPtr = span;
> -       return points_[span].y +
> -              (x - points_[span].x) * (points_[span + 1].y - points_[span].y) /
> -                      (points_[span + 1].x - points_[span].x);
> +       return points_[span].y() +
> +              (x - points_[span].x()) * (points_[span + 1].y() - points_[span].y()) /
> +                      (points_[span + 1].x() - points_[span].x());
>  }
>  
>  int Pwl::findSpan(double x, int span) const
>  {
>         /*
>          * Pwls are generally small, so linear search may well be faster than
> -        * binary, though could review this if large PWls start turning up.
> +        * binary, though could review this if large Pwls start turning up.
>          */
>         int lastSpan = points_.size() - 2;
>         /*
> @@ -89,23 +235,36 @@ int Pwl::findSpan(double x, int span) const
>          * control point
>          */
>         span = std::max(0, std::min(lastSpan, span));
> -       while (span < lastSpan && x >= points_[span + 1].x)
> +       while (span < lastSpan && x >= points_[span + 1].x())
>                 span++;
> -       while (span && x < points_[span].x)
> +       while (span && x < points_[span].x())
>                 span--;
>         return span;
>  }
>  
> -Pwl::PerpType Pwl::invert(Point const &xy, Point &perp, int &span,
> +/**
> + * \brief Find perpendicular closest to a given point
> + * \param[in] xy Point to find the perpendicular to
> + * \param[out] perp The found perpendicular
> + * \param[inout] span The span left of the point to start searching from
> + * \param[in] eps Epsilon for the minimum x distance between points (optional)
> + *
> + * Find perpendicular closest to \a xy, starting from \a span+1 so you can call
> + * it repeatedly to check for multiple closest points (set span to -1 on the
> + * first call). Also returns "pseudo" perpendiculars; see PerpType enum.
> + *
> + * \return Type of perpendicular found
> + */
> +Pwl::PerpType Pwl::invert(PointF const &xy, PointF &perp, int &span,
>                           const double eps) const
>  {
>         assert(span >= -1);
>         bool prevOffEnd = false;
>         for (span = span + 1; span < (int)points_.size() - 1; span++) {
> -               Point spanVec = points_[span + 1] - points_[span];
> -               double t = ((xy - points_[span]) % spanVec) / spanVec.len2();
> -               if (t < -eps) /* off the start of this span */
> -               {
> +               PointF spanVec = points_[span + 1] - points_[span];
> +               double t = ((xy - points_[span]) * spanVec) / spanVec.len2();
> +               if (t < -eps) {
> +                       /* off the start of this span */
>                         if (span == 0) {
>                                 perp = points_[span];
>                                 return PerpType::Start;
> @@ -113,15 +272,15 @@ Pwl::PerpType Pwl::invert(Point const &xy, Point &perp, int &span,
>                                 perp = points_[span];
>                                 return PerpType::Vertex;
>                         }
> -               } else if (t > 1 + eps) /* off the end of this span */
> -               {
> +               } else if (t > 1 + eps) {
> +                       /* off the end of this span */
>                         if (span == (int)points_.size() - 2) {
>                                 perp = points_[span + 1];
>                                 return PerpType::End;
>                         }
>                         prevOffEnd = true;
> -               } else /* a true perpendicular */
> -               {
> +               } else {
> +                       /* a true perpendicular */
>                         perp = points_[span] + spanVec * t;
>                         return PerpType::Perpendicular;
>                 }
> @@ -129,25 +288,36 @@ Pwl::PerpType Pwl::invert(Point const &xy, Point &perp, int &span,
>         return PerpType::None;
>  }
>  
> +/**
> + * \brief Compute the inverse function
> + * \param[out] trueInverse True if the result is a proper/true inverse
> + * \param[in] eps Epsilon for the minimum x distance between points (optional)
> + *
> + * Indicate if it is a proper (true) inverse, or only a best effort (e.g.
> + * input was non-monotonic).
> + *
> + * \return The inverse piecewise linear function
> + */
>  Pwl Pwl::inverse(bool *trueInverse, const double eps) const
>  {
>         bool appended = false, prepended = false, neither = false;
>         Pwl inverse;
>  
> -       for (Point const &p : points_) {
> -               if (inverse.empty())
> -                       inverse.append(p.y, p.x, eps);
> -               else if (std::abs(inverse.points_.back().x - p.y) <= eps ||
> -                        std::abs(inverse.points_.front().x - p.y) <= eps)
> +       for (PointF const &p : points_) {
> +               if (inverse.empty()) {
> +                       inverse.append(p.y(), p.x(), eps);
> +               } else if (std::abs(inverse.points_.back().x() - p.y()) <= eps ||
> +                          std::abs(inverse.points_.front().x() - p.y()) <= eps) {
>                         /* do nothing */;
> -               else if (p.y > inverse.points_.back().x) {
> -                       inverse.append(p.y, p.x, eps);
> +               } else if (p.y() > inverse.points_.back().x()) {
> +                       inverse.append(p.y(), p.x(), eps);
>                         appended = true;
> -               } else if (p.y < inverse.points_.front().x) {
> -                       inverse.prepend(p.y, p.x, eps);
> +               } else if (p.y() < inverse.points_.front().x()) {
> +                       inverse.prepend(p.y(), p.x(), eps);
>                         prepended = true;
> -               } else
> +               } else {
>                         neither = true;
> +               }
>         }
>  
>         /*
> @@ -161,44 +331,53 @@ Pwl Pwl::inverse(bool *trueInverse, const double eps) const
>         return inverse;
>  }
>  
> +/**
> + * \brief Compose two piecewise linear functions together
> + * \param[in] other The "other" piecewise linear function
> + * \param[in] eps Epsilon for the minimum x distance between points (optional)
> + *
> + * The "this" function is done first, and "other" after.
> + *
> + * \return The composed piecewise linear function
> + */
>  Pwl Pwl::compose(Pwl const &other, const double eps) const
>  {
> -       double thisX = points_[0].x, thisY = points_[0].y;
> +       double thisX = points_[0].x(), thisY = points_[0].y();
>         int thisSpan = 0, otherSpan = other.findSpan(thisY, 0);
> -       Pwl result({ { thisX, other.eval(thisY, &otherSpan, false) } });
> +       Pwl result({ PointF({ thisX, other.eval(thisY, &otherSpan, false) }) });
> +
>         while (thisSpan != (int)points_.size() - 1) {
> -               double dx = points_[thisSpan + 1].x - points_[thisSpan].x,
> -                      dy = points_[thisSpan + 1].y - points_[thisSpan].y;
> +               double dx = points_[thisSpan + 1].x() - points_[thisSpan].x(),
> +                      dy = points_[thisSpan + 1].y() - points_[thisSpan].y();
>                 if (std::abs(dy) > eps &&
>                     otherSpan + 1 < (int)other.points_.size() &&
> -                   points_[thisSpan + 1].y >=
> -                           other.points_[otherSpan + 1].x + eps) {
> +                   points_[thisSpan + 1].y() >= other.points_[otherSpan + 1].x() + eps) {
>                         /*
>                          * next control point in result will be where this
>                          * function's y reaches the next span in other
>                          */
> -                       thisX = points_[thisSpan].x +
> -                               (other.points_[otherSpan + 1].x -
> -                                points_[thisSpan].y) *
> +                       thisX = points_[thisSpan].x() +
> +                               (other.points_[otherSpan + 1].x() -
> +                                points_[thisSpan].y()) *
>                                         dx / dy;
> -                       thisY = other.points_[++otherSpan].x;
> +                       thisY = other.points_[++otherSpan].x();
>                 } else if (std::abs(dy) > eps && otherSpan > 0 &&
> -                          points_[thisSpan + 1].y <=
> -                                  other.points_[otherSpan - 1].x - eps) {
> +                          points_[thisSpan + 1].y() <=
> +                                  other.points_[otherSpan - 1].x() - eps) {
>                         /*
>                          * next control point in result will be where this
>                          * function's y reaches the previous span in other
>                          */
> -                       thisX = points_[thisSpan].x +
> -                               (other.points_[otherSpan + 1].x -
> -                                points_[thisSpan].y) *
> +                       thisX = points_[thisSpan].x() +
> +                               (other.points_[otherSpan + 1].x() -
> +                                points_[thisSpan].y()) *
>                                         dx / dy;
> -                       thisY = other.points_[--otherSpan].x;
> +                       thisY = other.points_[--otherSpan].x();
>                 } else {
>                         /* we stay in the same span in other */
>                         thisSpan++;
> -                       thisX = points_[thisSpan].x,
> -                       thisY = points_[thisSpan].y;
> +                       thisX = points_[thisSpan].x(),
> +                       thisY = points_[thisSpan].y();
>                 }
>                 result.append(thisX, other.eval(thisY, &otherSpan, false),
>                               eps);
> @@ -206,32 +385,47 @@ Pwl Pwl::compose(Pwl const &other, const double eps) const
>         return result;
>  }
>  
> +/**
> + * \brief Apply function to (x,y) values at every control point
> + * \param f Function to be applied
> + */
>  void Pwl::map(std::function<void(double x, double y)> f) const
>  {
>         for (auto &pt : points_)
> -               f(pt.x, pt.y);
> +               f(pt.x(), pt.y());
>  }
>  
> +/**
> + * \brief Apply function to (x, y0, y1) values wherever either Pwl has a
> + * control point.
> + */
>  void Pwl::map2(Pwl const &pwl0, Pwl const &pwl1,
>                std::function<void(double x, double y0, double y1)> f)
>  {
>         int span0 = 0, span1 = 0;
> -       double x = std::min(pwl0.points_[0].x, pwl1.points_[0].x);
> +       double x = std::min(pwl0.points_[0].x(), pwl1.points_[0].x());
>         f(x, pwl0.eval(x, &span0, false), pwl1.eval(x, &span1, false));
> +
>         while (span0 < (int)pwl0.points_.size() - 1 ||
>                span1 < (int)pwl1.points_.size() - 1) {
>                 if (span0 == (int)pwl0.points_.size() - 1)
> -                       x = pwl1.points_[++span1].x;
> +                       x = pwl1.points_[++span1].x();
>                 else if (span1 == (int)pwl1.points_.size() - 1)
> -                       x = pwl0.points_[++span0].x;
> -               else if (pwl0.points_[span0 + 1].x > pwl1.points_[span1 + 1].x)
> -                       x = pwl1.points_[++span1].x;
> +                       x = pwl0.points_[++span0].x();
> +               else if (pwl0.points_[span0 + 1].x() > pwl1.points_[span1 + 1].x())
> +                       x = pwl1.points_[++span1].x();
>                 else
> -                       x = pwl0.points_[++span0].x;
> +                       x = pwl0.points_[++span0].x();
>                 f(x, pwl0.eval(x, &span0, false), pwl1.eval(x, &span1, false));
>         }
>  }
>  
> +/**
> + * \brief Combine two Pwls
> + *
> + * Create a new Pwl where the y values are given by running f wherever either
> + * has a knot.
> + */
>  Pwl Pwl::combine(Pwl const &pwl0, Pwl const &pwl1,
>                  std::function<double(double x, double y0, double y1)> f,
>                  const double eps)
> @@ -243,27 +437,54 @@ Pwl Pwl::combine(Pwl const &pwl0, Pwl const &pwl1,
>         return result;
>  }
>  
> -void Pwl::matchDomain(Interval const &domain, bool clip, const double eps)
> +/**
> + * \brief Extend the domain of the piecewise linear function
> + * \param[in] domain The domain to extend to
> + * \param[in] clip True to keep the existing edge y values, false to extrapolate
> + * \param[in] eps Epsilon for the minimum x distance between points (optional)
> + *
> + * Extend the domain of the piecewise linear function to match \a domain. If \a
> + * clip is set to true then the y values of the new edges will be the same as
> + * the existing y values of the edge points of the pwl. If false, then the y
> + * values will be extrapolated linearly from the existing edge points of the
> + * pwl.
> + */
> +void Pwl::extendDomain(Interval const &domain, bool clip, const double eps)
>  {
>         int span = 0;
> -       prepend(domain.start, eval(clip ? points_[0].x : domain.start, &span),
> +       prepend(domain.start, eval(clip ? points_[0].x() : domain.start, &span),
>                 eps);
>         span = points_.size() - 2;
> -       append(domain.end, eval(clip ? points_.back().x : domain.end, &span),
> +       append(domain.end, eval(clip ? points_.back().x() : domain.end, &span),
>                eps);
>  }
>  
> +/**
> + * \brief Multiply the piecewise linear function
> + * \param d Scalar multiplier to multiply the function by
> + * \return This function, after it has been multiplied by \a d
> + */
>  Pwl &Pwl::operator*=(double d)
>  {
>         for (auto &pt : points_)
> -               pt.y *= d;
> +               pt[1] *= d;
>         return *this;
>  }
>  
> -void Pwl::debug(FILE *fp) const
> +/**
> + * \brief Assemble and return a string describing the piecewise linear function
> + * \return A string describing the piecewise linear function
> + */
> +std::string Pwl::toString() const
>  {
> -       fprintf(fp, "Pwl {\n");
> +       std::stringstream ss;
> +       ss << "Pwl { ";
>         for (auto &p : points_)
> -               fprintf(fp, "\t(%g, %g)\n", p.x, p.y);
> -       fprintf(fp, "}\n");
> +               ss << "(" << p.x() << ", " << p.y() << ") ";
> +       ss << "}";
> +       return ss.str();
>  }
> +
> +} /* namespace ipa */
> +
> +} /* namespace libcamera */
> diff --git a/src/ipa/libipa/pwl.h b/src/ipa/libipa/pwl.h
> index 7d5e7e4d3..c73693341 100644
> --- a/src/ipa/libipa/pwl.h
> +++ b/src/ipa/libipa/pwl.h
> @@ -2,126 +2,101 @@
>  /*
>   * Copyright (C) 2019, Raspberry Pi Ltd
>   *
> - * piecewise linear functions interface
> + * Piecewise linear functions interface
>   */
>  #pragma once
>  
>  #include <functional>
>  #include <math.h>
> +#include <string>
>  #include <vector>
>  
> +#include <libcamera/geometry.h>
> +
>  #include "libcamera/internal/yaml_parser.h"
>  
> -namespace RPiController {
> +#include "vector.h"
> +
> +namespace libcamera {
> +
> +namespace ipa {
>  
>  class Pwl
>  {
>  public:
> +       using PointF = Vector<double, 2>;
> +
> +       enum class PerpType {
> +               None,
> +               Start,
> +               End,
> +               Vertex,
> +               Perpendicular,
> +       };
> +
>         struct Interval {
>                 Interval(double _start, double _end)
> -                       : start(_start), end(_end)
> -               {
> -               }
> -               double start, end;
> +                       : start(_start), end(_end) {}
> +
>                 bool contains(double value)
>                 {
>                         return value >= start && value <= end;
>                 }
> -               double clip(double value)
> +
> +               double clamp(double value)
>                 {
>                         return value < start ? start
>                                              : (value > end ? end : value);
>                 }
> +
>                 double len() const { return end - start; }
> +
> +               double start, end;
>         };
> -       struct Point {
> -               Point() : x(0), y(0) {}
> -               Point(double _x, double _y)
> -                       : x(_x), y(_y) {}
> -               double x, y;
> -               Point operator-(Point const &p) const
> -               {
> -                       return Point(x - p.x, y - p.y);
> -               }
> -               Point operator+(Point const &p) const
> -               {
> -                       return Point(x + p.x, y + p.y);
> -               }
> -               double operator%(Point const &p) const
> -               {
> -                       return x * p.x + y * p.y;
> -               }
> -               Point operator*(double f) const { return Point(x * f, y * f); }
> -               Point operator/(double f) const { return Point(x / f, y / f); }
> -               double len2() const { return x * x + y * y; }
> -               double len() const { return sqrt(len2()); }
> -       };
> +
>         Pwl() {}
> -       Pwl(std::vector<Point> const &points) : points_(points) {}
> -       int read(const libcamera::YamlObject &params);
> +       Pwl(std::vector<PointF> const &points)
> +               : points_(points) {}
> +       int readYaml(const libcamera::YamlObject &params);
> +
>         void append(double x, double y, const double eps = 1e-6);
>         void prepend(double x, double y, const double eps = 1e-6);
> +
>         Interval domain() const;
>         Interval range() const;
> +
>         bool empty() const;
> -       /*
> -        * Evaluate Pwl, optionally supplying an initial guess for the
> -        * "span". The "span" may be optionally be updated.  If you want to know
> -        * the "span" value but don't have an initial guess you can set it to
> -        * -1.
> -        */
> +
>         double eval(double x, int *spanPtr = nullptr,
>                     bool updateSpan = true) const;
> -       /*
> -        * Find perpendicular closest to xy, starting from span+1 so you can
> -        * call it repeatedly to check for multiple closest points (set span to
> -        * -1 on the first call). Also returns "pseudo" perpendiculars; see
> -        * PerpType enum.
> -        */
> -       enum class PerpType {
> -               None, /* no perpendicular found */
> -               Start, /* start of Pwl is closest point */
> -               End, /* end of Pwl is closest point */
> -               Vertex, /* vertex of Pwl is closest point */
> -               Perpendicular /* true perpendicular found */
> -       };
> -       PerpType invert(Point const &xy, Point &perp, int &span,
> +
> +       PerpType invert(PointF const &xy, PointF &perp, int &span,
>                         const double eps = 1e-6) const;
> -       /*
> -        * Compute the inverse function. Indicate if it is a proper (true)
> -        * inverse, or only a best effort (e.g. input was non-monotonic).
> -        */
>         Pwl inverse(bool *trueInverse = nullptr, const double eps = 1e-6) const;
> -       /* Compose two Pwls together, doing "this" first and "other" after. */
>         Pwl compose(Pwl const &other, const double eps = 1e-6) const;
> -       /* Apply function to (x,y) values at every control point. */
> +
>         void map(std::function<void(double x, double y)> f) const;
> -       /*
> -        * Apply function to (x, y0, y1) values wherever either Pwl has a
> -        * control point.
> -        */
> +
>         static void map2(Pwl const &pwl0, Pwl const &pwl1,
>                          std::function<void(double x, double y0, double y1)> f);
> -       /*
> -        * Combine two Pwls, meaning we create a new Pwl where the y values are
> -        * given by running f wherever either has a knot.
> -        */
> +
>         static Pwl
>         combine(Pwl const &pwl0, Pwl const &pwl1,
>                 std::function<double(double x, double y0, double y1)> f,
>                 const double eps = 1e-6);
> -       /*
> -        * Make "this" match (at least) the given domain. Any extension my be
> -        * clipped or linear.
> -        */
> -       void matchDomain(Interval const &domain, bool clip = true,
> -                        const double eps = 1e-6);
> +
> +       void extendDomain(Interval const &domain, bool clip = true,
> +                         const double eps = 1e-6);
> +
>         Pwl &operator*=(double d);
> -       void debug(FILE *fp = stdout) const;
> +
> +       std::string toString() const;
>  
>  private:
>         int findSpan(double x, int span) const;
> -       std::vector<Point> points_;
> +       std::vector<PointF> points_;
>  };
>  
> -} /* namespace RPiController */
> +} /* namespace ipa */
> +
> +} /* namespace libcamera */
> -- 
> 2.39.2
>

Patch
diff mbox series

diff --git a/src/ipa/libipa/meson.build b/src/ipa/libipa/meson.build
index 7ce885da7..8ec9c7847 100644
--- a/src/ipa/libipa/meson.build
+++ b/src/ipa/libipa/meson.build
@@ -8,6 +8,7 @@  libipa_headers = files([
     'fc_queue.h',
     'histogram.h',
     'module.h',
+    'pwl.h',
 ])
 
 libipa_sources = files([
@@ -18,6 +19,7 @@  libipa_sources = files([
     'fc_queue.cpp',
     'histogram.cpp',
     'module.cpp',
+    'pwl.cpp',
 ])
 
 libipa_includes = include_directories('..')
diff --git a/src/ipa/libipa/pwl.cpp b/src/ipa/libipa/pwl.cpp
index e39123767..8f8ee17e8 100644
--- a/src/ipa/libipa/pwl.cpp
+++ b/src/ipa/libipa/pwl.cpp
@@ -1,19 +1,120 @@ 
 /* SPDX-License-Identifier: BSD-2-Clause */
 /*
  * Copyright (C) 2019, Raspberry Pi Ltd
+ * Copyright (C) 2024, Ideas on Board Oy
  *
- * piecewise linear functions
+ * Piecewise linear functions
  */
 
+#include "pwl.h"
+
 #include <cassert>
 #include <cmath>
+#include <sstream>
 #include <stdexcept>
 
-#include "pwl.h"
+#include <libcamera/geometry.h>
+
+/**
+ * \file pwl.h
+ * \brief Piecewise linear functions
+ */
+
+namespace libcamera {
+
+namespace ipa {
+
+/**
+ * \class Pwl
+ * \brief Describe a univariate piecewise linear function in real space
+ */
+
+/**
+ * \typedef Pwl::PointF
+ * \brief Describe a point in two-dimensional real space
+ */
+
+/**
+ * \enum Pwl::PerpType
+ * \brief Type of perpendicular found when inverting a piecewise linear function
+ *
+ * \var Pwl::PerpType::None
+ * \brief No perpendicular found
+ *
+ * \var Pwl::PerpType::Start
+ * \brief Start of Pwl is closest point
+ *
+ * \var Pwl::PerpType::End
+ * \brief End of Pwl is closest point
+ *
+ * \var Pwl::PerpType::Vertex
+ * \brief Vertex of Pwl is closest point
+ *
+ * \var Pwl::PerpType::Perpendicular
+ * \brief True perpendicular found
+ */
 
-using namespace RPiController;
+/**
+ * \class Pwl::Interval
+ * \brief Describe an interval in one-dimensional real space
+ */
+
+/**
+ * \fn Pwl::Interval::Interval(double _start, double _end)
+ * \brief Construct an interval
+ * \param _start Start of the interval
+ * \param _end End of the interval
+ */
+
+/**
+ * \fn Pwl::Interval::contains
+ * \brief Check if a given value falls within the interval
+ * \param value Value to check
+ */
+
+/**
+ * \fn Pwl::Interval::clamp
+ * \brief Clamp a value such that it is within the interval
+ * \param value Value to clamp
+ */
+
+/**
+ * \fn Pwl::Interval::len
+ * \brief Compute the length of the interval
+ */
 
-int Pwl::read(const libcamera::YamlObject &params)
+/**
+ * \var Pwl::Interval::start
+ * \brief Start of the interval
+ */
+
+/**
+ * \var Pwl::Interval::end
+ * \brief End of the interval
+ */
+
+/**
+ * \fn Pwl::Pwl(std::vector<PointF> const &points)
+ * \brief Construct a piecewise linear function from a list of 2D points
+ * \param points Vector of points from which to construct the piecewise linear function
+ *
+ * \a points must be in ascending order of x-value.
+ */
+
+/**
+ * \brief Populate the piecewise linear function from yaml data
+ * \param params Yaml data to populate the piecewise linear function with
+ *
+ * Any existing points in the piecewise linear function will *not* be
+ * overwritten.
+ *
+ * The yaml data is expected to be a list with an even number of numerical
+ * elements. These will be parsed in pairs into x and y points in the piecewise
+ * linear function, and added in order. x must be monotonically increasing.
+ *
+ * \return 0 on success, negative error code otherwise
+ */
+int Pwl::readYaml(const libcamera::YamlObject &params)
 {
 	if (!params.size() || params.size() % 2)
 		return -EINVAL;
@@ -24,64 +125,109 @@  int Pwl::read(const libcamera::YamlObject &params)
 		auto x = it->get<double>();
 		if (!x)
 			return -EINVAL;
-		if (it != list.begin() && *x <= points_.back().x)
+		if (it != list.begin() && *x <= points_.back().x())
 			return -EINVAL;
 
 		auto y = (++it)->get<double>();
 		if (!y)
 			return -EINVAL;
 
-		points_.push_back(Point(*x, *y));
+		points_.push_back(PointF({ *x, *y }));
 	}
 
 	return 0;
 }
 
+/**
+ * \brief Append a point to the end of the piecewise linear function
+ * \param x x-coordinate of the point to add to the piecewise linear function
+ * \param y y-coordinate of the point to add to the piecewise linear function
+ * \param eps Epsilon for the minimum x distance between points (optional)
+ *
+ * The point's x-coordinate must be greater than the x-coordinate of the last
+ * (= greatest) point already in the piecewise linear function.
+ */
 void Pwl::append(double x, double y, const double eps)
 {
-	if (points_.empty() || points_.back().x + eps < x)
-		points_.push_back(Point(x, y));
+	if (points_.empty() || points_.back().x() + eps < x)
+		points_.push_back(PointF({ x, y }));
 }
 
+/**
+ * \brief Prepend a point to the beginning of the piecewise linear function
+ * \param x x-coordinate of the point to add to the piecewise linear function
+ * \param y y-coordinate of the point to add to the piecewise linear function
+ * \param eps Epsilon for the minimum x distance between points (optional)
+ *
+ * The point's x-coordinate must be less than the x-coordinate of the first
+ * (= smallest) point already in the piecewise linear function.
+ */
 void Pwl::prepend(double x, double y, const double eps)
 {
-	if (points_.empty() || points_.front().x - eps > x)
-		points_.insert(points_.begin(), Point(x, y));
+	if (points_.empty() || points_.front().x() - eps > x)
+		points_.insert(points_.begin(), PointF({ x, y }));
 }
 
+/**
+ * \brief Get the domain of the piecewise linear function
+ * \return An interval representing the domain
+ */
 Pwl::Interval Pwl::domain() const
 {
-	return Interval(points_[0].x, points_[points_.size() - 1].x);
+	return Interval(points_[0].x(), points_[points_.size() - 1].x());
 }
 
+/**
+ * \brief Get the range of the piecewise linear function
+ * \return An interval representing the range
+ */
 Pwl::Interval Pwl::range() const
 {
-	double lo = points_[0].y, hi = lo;
+	double lo = points_[0].y(), hi = lo;
 	for (auto &p : points_)
-		lo = std::min(lo, p.y), hi = std::max(hi, p.y);
+		lo = std::min(lo, p.y()), hi = std::max(hi, p.y());
 	return Interval(lo, hi);
 }
 
+/**
+ * \brief Check if the piecewise linear function is empty
+ * \return True if there are no points in the function, false otherwise
+ */
 bool Pwl::empty() const
 {
 	return points_.empty();
 }
 
+/**
+ * \brief Evaluate the piecewise linear function
+ * \param[in] x The x value to input into the function
+ * \param[inout] spanPtr Initial guess for span
+ * \param[in] updateSpan Set to true to update spanPtr
+ *
+ * Evaluate Pwl, optionally supplying an initial guess for the
+ * "span". The "span" may be optionally be updated. If you want to know
+ * the "span" value but don't have an initial guess you can set it to
+ * -1.
+ *
+ *  \return The result of evaluating the piecewise linear function at position \a x
+ */
 double Pwl::eval(double x, int *spanPtr, bool updateSpan) const
 {
-	int span = findSpan(x, spanPtr && *spanPtr != -1 ? *spanPtr : points_.size() / 2 - 1);
+	int span = findSpan(x, spanPtr && *spanPtr != -1
+					? *spanPtr
+					: points_.size() / 2 - 1);
 	if (spanPtr && updateSpan)
 		*spanPtr = span;
-	return points_[span].y +
-	       (x - points_[span].x) * (points_[span + 1].y - points_[span].y) /
-		       (points_[span + 1].x - points_[span].x);
+	return points_[span].y() +
+	       (x - points_[span].x()) * (points_[span + 1].y() - points_[span].y()) /
+		       (points_[span + 1].x() - points_[span].x());
 }
 
 int Pwl::findSpan(double x, int span) const
 {
 	/*
 	 * Pwls are generally small, so linear search may well be faster than
-	 * binary, though could review this if large PWls start turning up.
+	 * binary, though could review this if large Pwls start turning up.
 	 */
 	int lastSpan = points_.size() - 2;
 	/*
@@ -89,23 +235,36 @@  int Pwl::findSpan(double x, int span) const
 	 * control point
 	 */
 	span = std::max(0, std::min(lastSpan, span));
-	while (span < lastSpan && x >= points_[span + 1].x)
+	while (span < lastSpan && x >= points_[span + 1].x())
 		span++;
-	while (span && x < points_[span].x)
+	while (span && x < points_[span].x())
 		span--;
 	return span;
 }
 
-Pwl::PerpType Pwl::invert(Point const &xy, Point &perp, int &span,
+/**
+ * \brief Find perpendicular closest to a given point
+ * \param[in] xy Point to find the perpendicular to
+ * \param[out] perp The found perpendicular
+ * \param[inout] span The span left of the point to start searching from
+ * \param[in] eps Epsilon for the minimum x distance between points (optional)
+ *
+ * Find perpendicular closest to \a xy, starting from \a span+1 so you can call
+ * it repeatedly to check for multiple closest points (set span to -1 on the
+ * first call). Also returns "pseudo" perpendiculars; see PerpType enum.
+ *
+ * \return Type of perpendicular found
+ */
+Pwl::PerpType Pwl::invert(PointF const &xy, PointF &perp, int &span,
 			  const double eps) const
 {
 	assert(span >= -1);
 	bool prevOffEnd = false;
 	for (span = span + 1; span < (int)points_.size() - 1; span++) {
-		Point spanVec = points_[span + 1] - points_[span];
-		double t = ((xy - points_[span]) % spanVec) / spanVec.len2();
-		if (t < -eps) /* off the start of this span */
-		{
+		PointF spanVec = points_[span + 1] - points_[span];
+		double t = ((xy - points_[span]) * spanVec) / spanVec.len2();
+		if (t < -eps) {
+			/* off the start of this span */
 			if (span == 0) {
 				perp = points_[span];
 				return PerpType::Start;
@@ -113,15 +272,15 @@  Pwl::PerpType Pwl::invert(Point const &xy, Point &perp, int &span,
 				perp = points_[span];
 				return PerpType::Vertex;
 			}
-		} else if (t > 1 + eps) /* off the end of this span */
-		{
+		} else if (t > 1 + eps) {
+			/* off the end of this span */
 			if (span == (int)points_.size() - 2) {
 				perp = points_[span + 1];
 				return PerpType::End;
 			}
 			prevOffEnd = true;
-		} else /* a true perpendicular */
-		{
+		} else {
+			/* a true perpendicular */
 			perp = points_[span] + spanVec * t;
 			return PerpType::Perpendicular;
 		}
@@ -129,25 +288,36 @@  Pwl::PerpType Pwl::invert(Point const &xy, Point &perp, int &span,
 	return PerpType::None;
 }
 
+/**
+ * \brief Compute the inverse function
+ * \param[out] trueInverse True if the result is a proper/true inverse
+ * \param[in] eps Epsilon for the minimum x distance between points (optional)
+ *
+ * Indicate if it is a proper (true) inverse, or only a best effort (e.g.
+ * input was non-monotonic).
+ *
+ * \return The inverse piecewise linear function
+ */
 Pwl Pwl::inverse(bool *trueInverse, const double eps) const
 {
 	bool appended = false, prepended = false, neither = false;
 	Pwl inverse;
 
-	for (Point const &p : points_) {
-		if (inverse.empty())
-			inverse.append(p.y, p.x, eps);
-		else if (std::abs(inverse.points_.back().x - p.y) <= eps ||
-			 std::abs(inverse.points_.front().x - p.y) <= eps)
+	for (PointF const &p : points_) {
+		if (inverse.empty()) {
+			inverse.append(p.y(), p.x(), eps);
+		} else if (std::abs(inverse.points_.back().x() - p.y()) <= eps ||
+			   std::abs(inverse.points_.front().x() - p.y()) <= eps) {
 			/* do nothing */;
-		else if (p.y > inverse.points_.back().x) {
-			inverse.append(p.y, p.x, eps);
+		} else if (p.y() > inverse.points_.back().x()) {
+			inverse.append(p.y(), p.x(), eps);
 			appended = true;
-		} else if (p.y < inverse.points_.front().x) {
-			inverse.prepend(p.y, p.x, eps);
+		} else if (p.y() < inverse.points_.front().x()) {
+			inverse.prepend(p.y(), p.x(), eps);
 			prepended = true;
-		} else
+		} else {
 			neither = true;
+		}
 	}
 
 	/*
@@ -161,44 +331,53 @@  Pwl Pwl::inverse(bool *trueInverse, const double eps) const
 	return inverse;
 }
 
+/**
+ * \brief Compose two piecewise linear functions together
+ * \param[in] other The "other" piecewise linear function
+ * \param[in] eps Epsilon for the minimum x distance between points (optional)
+ *
+ * The "this" function is done first, and "other" after.
+ *
+ * \return The composed piecewise linear function
+ */
 Pwl Pwl::compose(Pwl const &other, const double eps) const
 {
-	double thisX = points_[0].x, thisY = points_[0].y;
+	double thisX = points_[0].x(), thisY = points_[0].y();
 	int thisSpan = 0, otherSpan = other.findSpan(thisY, 0);
-	Pwl result({ { thisX, other.eval(thisY, &otherSpan, false) } });
+	Pwl result({ PointF({ thisX, other.eval(thisY, &otherSpan, false) }) });
+
 	while (thisSpan != (int)points_.size() - 1) {
-		double dx = points_[thisSpan + 1].x - points_[thisSpan].x,
-		       dy = points_[thisSpan + 1].y - points_[thisSpan].y;
+		double dx = points_[thisSpan + 1].x() - points_[thisSpan].x(),
+		       dy = points_[thisSpan + 1].y() - points_[thisSpan].y();
 		if (std::abs(dy) > eps &&
 		    otherSpan + 1 < (int)other.points_.size() &&
-		    points_[thisSpan + 1].y >=
-			    other.points_[otherSpan + 1].x + eps) {
+		    points_[thisSpan + 1].y() >= other.points_[otherSpan + 1].x() + eps) {
 			/*
 			 * next control point in result will be where this
 			 * function's y reaches the next span in other
 			 */
-			thisX = points_[thisSpan].x +
-				(other.points_[otherSpan + 1].x -
-				 points_[thisSpan].y) *
+			thisX = points_[thisSpan].x() +
+				(other.points_[otherSpan + 1].x() -
+				 points_[thisSpan].y()) *
 					dx / dy;
-			thisY = other.points_[++otherSpan].x;
+			thisY = other.points_[++otherSpan].x();
 		} else if (std::abs(dy) > eps && otherSpan > 0 &&
-			   points_[thisSpan + 1].y <=
-				   other.points_[otherSpan - 1].x - eps) {
+			   points_[thisSpan + 1].y() <=
+				   other.points_[otherSpan - 1].x() - eps) {
 			/*
 			 * next control point in result will be where this
 			 * function's y reaches the previous span in other
 			 */
-			thisX = points_[thisSpan].x +
-				(other.points_[otherSpan + 1].x -
-				 points_[thisSpan].y) *
+			thisX = points_[thisSpan].x() +
+				(other.points_[otherSpan + 1].x() -
+				 points_[thisSpan].y()) *
 					dx / dy;
-			thisY = other.points_[--otherSpan].x;
+			thisY = other.points_[--otherSpan].x();
 		} else {
 			/* we stay in the same span in other */
 			thisSpan++;
-			thisX = points_[thisSpan].x,
-			thisY = points_[thisSpan].y;
+			thisX = points_[thisSpan].x(),
+			thisY = points_[thisSpan].y();
 		}
 		result.append(thisX, other.eval(thisY, &otherSpan, false),
 			      eps);
@@ -206,32 +385,47 @@  Pwl Pwl::compose(Pwl const &other, const double eps) const
 	return result;
 }
 
+/**
+ * \brief Apply function to (x,y) values at every control point
+ * \param f Function to be applied
+ */
 void Pwl::map(std::function<void(double x, double y)> f) const
 {
 	for (auto &pt : points_)
-		f(pt.x, pt.y);
+		f(pt.x(), pt.y());
 }
 
+/**
+ * \brief Apply function to (x, y0, y1) values wherever either Pwl has a
+ * control point.
+ */
 void Pwl::map2(Pwl const &pwl0, Pwl const &pwl1,
 	       std::function<void(double x, double y0, double y1)> f)
 {
 	int span0 = 0, span1 = 0;
-	double x = std::min(pwl0.points_[0].x, pwl1.points_[0].x);
+	double x = std::min(pwl0.points_[0].x(), pwl1.points_[0].x());
 	f(x, pwl0.eval(x, &span0, false), pwl1.eval(x, &span1, false));
+
 	while (span0 < (int)pwl0.points_.size() - 1 ||
 	       span1 < (int)pwl1.points_.size() - 1) {
 		if (span0 == (int)pwl0.points_.size() - 1)
-			x = pwl1.points_[++span1].x;
+			x = pwl1.points_[++span1].x();
 		else if (span1 == (int)pwl1.points_.size() - 1)
-			x = pwl0.points_[++span0].x;
-		else if (pwl0.points_[span0 + 1].x > pwl1.points_[span1 + 1].x)
-			x = pwl1.points_[++span1].x;
+			x = pwl0.points_[++span0].x();
+		else if (pwl0.points_[span0 + 1].x() > pwl1.points_[span1 + 1].x())
+			x = pwl1.points_[++span1].x();
 		else
-			x = pwl0.points_[++span0].x;
+			x = pwl0.points_[++span0].x();
 		f(x, pwl0.eval(x, &span0, false), pwl1.eval(x, &span1, false));
 	}
 }
 
+/**
+ * \brief Combine two Pwls
+ *
+ * Create a new Pwl where the y values are given by running f wherever either
+ * has a knot.
+ */
 Pwl Pwl::combine(Pwl const &pwl0, Pwl const &pwl1,
 		 std::function<double(double x, double y0, double y1)> f,
 		 const double eps)
@@ -243,27 +437,54 @@  Pwl Pwl::combine(Pwl const &pwl0, Pwl const &pwl1,
 	return result;
 }
 
-void Pwl::matchDomain(Interval const &domain, bool clip, const double eps)
+/**
+ * \brief Extend the domain of the piecewise linear function
+ * \param[in] domain The domain to extend to
+ * \param[in] clip True to keep the existing edge y values, false to extrapolate
+ * \param[in] eps Epsilon for the minimum x distance between points (optional)
+ *
+ * Extend the domain of the piecewise linear function to match \a domain. If \a
+ * clip is set to true then the y values of the new edges will be the same as
+ * the existing y values of the edge points of the pwl. If false, then the y
+ * values will be extrapolated linearly from the existing edge points of the
+ * pwl.
+ */
+void Pwl::extendDomain(Interval const &domain, bool clip, const double eps)
 {
 	int span = 0;
-	prepend(domain.start, eval(clip ? points_[0].x : domain.start, &span),
+	prepend(domain.start, eval(clip ? points_[0].x() : domain.start, &span),
 		eps);
 	span = points_.size() - 2;
-	append(domain.end, eval(clip ? points_.back().x : domain.end, &span),
+	append(domain.end, eval(clip ? points_.back().x() : domain.end, &span),
 	       eps);
 }
 
+/**
+ * \brief Multiply the piecewise linear function
+ * \param d Scalar multiplier to multiply the function by
+ * \return This function, after it has been multiplied by \a d
+ */
 Pwl &Pwl::operator*=(double d)
 {
 	for (auto &pt : points_)
-		pt.y *= d;
+		pt[1] *= d;
 	return *this;
 }
 
-void Pwl::debug(FILE *fp) const
+/**
+ * \brief Assemble and return a string describing the piecewise linear function
+ * \return A string describing the piecewise linear function
+ */
+std::string Pwl::toString() const
 {
-	fprintf(fp, "Pwl {\n");
+	std::stringstream ss;
+	ss << "Pwl { ";
 	for (auto &p : points_)
-		fprintf(fp, "\t(%g, %g)\n", p.x, p.y);
-	fprintf(fp, "}\n");
+		ss << "(" << p.x() << ", " << p.y() << ") ";
+	ss << "}";
+	return ss.str();
 }
+
+} /* namespace ipa */
+
+} /* namespace libcamera */
diff --git a/src/ipa/libipa/pwl.h b/src/ipa/libipa/pwl.h
index 7d5e7e4d3..c73693341 100644
--- a/src/ipa/libipa/pwl.h
+++ b/src/ipa/libipa/pwl.h
@@ -2,126 +2,101 @@ 
 /*
  * Copyright (C) 2019, Raspberry Pi Ltd
  *
- * piecewise linear functions interface
+ * Piecewise linear functions interface
  */
 #pragma once
 
 #include <functional>
 #include <math.h>
+#include <string>
 #include <vector>
 
+#include <libcamera/geometry.h>
+
 #include "libcamera/internal/yaml_parser.h"
 
-namespace RPiController {
+#include "vector.h"
+
+namespace libcamera {
+
+namespace ipa {
 
 class Pwl
 {
 public:
+	using PointF = Vector<double, 2>;
+
+	enum class PerpType {
+		None,
+		Start,
+		End,
+		Vertex,
+		Perpendicular,
+	};
+
 	struct Interval {
 		Interval(double _start, double _end)
-			: start(_start), end(_end)
-		{
-		}
-		double start, end;
+			: start(_start), end(_end) {}
+
 		bool contains(double value)
 		{
 			return value >= start && value <= end;
 		}
-		double clip(double value)
+
+		double clamp(double value)
 		{
 			return value < start ? start
 					     : (value > end ? end : value);
 		}
+
 		double len() const { return end - start; }
+
+		double start, end;
 	};
-	struct Point {
-		Point() : x(0), y(0) {}
-		Point(double _x, double _y)
-			: x(_x), y(_y) {}
-		double x, y;
-		Point operator-(Point const &p) const
-		{
-			return Point(x - p.x, y - p.y);
-		}
-		Point operator+(Point const &p) const
-		{
-			return Point(x + p.x, y + p.y);
-		}
-		double operator%(Point const &p) const
-		{
-			return x * p.x + y * p.y;
-		}
-		Point operator*(double f) const { return Point(x * f, y * f); }
-		Point operator/(double f) const { return Point(x / f, y / f); }
-		double len2() const { return x * x + y * y; }
-		double len() const { return sqrt(len2()); }
-	};
+
 	Pwl() {}
-	Pwl(std::vector<Point> const &points) : points_(points) {}
-	int read(const libcamera::YamlObject &params);
+	Pwl(std::vector<PointF> const &points)
+		: points_(points) {}
+	int readYaml(const libcamera::YamlObject &params);
+
 	void append(double x, double y, const double eps = 1e-6);
 	void prepend(double x, double y, const double eps = 1e-6);
+
 	Interval domain() const;
 	Interval range() const;
+
 	bool empty() const;
-	/*
-	 * Evaluate Pwl, optionally supplying an initial guess for the
-	 * "span". The "span" may be optionally be updated.  If you want to know
-	 * the "span" value but don't have an initial guess you can set it to
-	 * -1.
-	 */
+
 	double eval(double x, int *spanPtr = nullptr,
 		    bool updateSpan = true) const;
-	/*
-	 * Find perpendicular closest to xy, starting from span+1 so you can
-	 * call it repeatedly to check for multiple closest points (set span to
-	 * -1 on the first call). Also returns "pseudo" perpendiculars; see
-	 * PerpType enum.
-	 */
-	enum class PerpType {
-		None, /* no perpendicular found */
-		Start, /* start of Pwl is closest point */
-		End, /* end of Pwl is closest point */
-		Vertex, /* vertex of Pwl is closest point */
-		Perpendicular /* true perpendicular found */
-	};
-	PerpType invert(Point const &xy, Point &perp, int &span,
+
+	PerpType invert(PointF const &xy, PointF &perp, int &span,
 			const double eps = 1e-6) const;
-	/*
-	 * Compute the inverse function. Indicate if it is a proper (true)
-	 * inverse, or only a best effort (e.g. input was non-monotonic).
-	 */
 	Pwl inverse(bool *trueInverse = nullptr, const double eps = 1e-6) const;
-	/* Compose two Pwls together, doing "this" first and "other" after. */
 	Pwl compose(Pwl const &other, const double eps = 1e-6) const;
-	/* Apply function to (x,y) values at every control point. */
+
 	void map(std::function<void(double x, double y)> f) const;
-	/*
-	 * Apply function to (x, y0, y1) values wherever either Pwl has a
-	 * control point.
-	 */
+
 	static void map2(Pwl const &pwl0, Pwl const &pwl1,
 			 std::function<void(double x, double y0, double y1)> f);
-	/*
-	 * Combine two Pwls, meaning we create a new Pwl where the y values are
-	 * given by running f wherever either has a knot.
-	 */
+
 	static Pwl
 	combine(Pwl const &pwl0, Pwl const &pwl1,
 		std::function<double(double x, double y0, double y1)> f,
 		const double eps = 1e-6);
-	/*
-	 * Make "this" match (at least) the given domain. Any extension my be
-	 * clipped or linear.
-	 */
-	void matchDomain(Interval const &domain, bool clip = true,
-			 const double eps = 1e-6);
+
+	void extendDomain(Interval const &domain, bool clip = true,
+			  const double eps = 1e-6);
+
 	Pwl &operator*=(double d);
-	void debug(FILE *fp = stdout) const;
+
+	std::string toString() const;
 
 private:
 	int findSpan(double x, int span) const;
-	std::vector<Point> points_;
+	std::vector<PointF> points_;
 };
 
-} /* namespace RPiController */
+} /* namespace ipa */
+
+} /* namespace libcamera */